Vegetable IPM Research Update Ian Grettenberger, Addie Abrams, Sophie Allen, Kirsten Pearsons, and Daniel Hasegawa Addie's projects:

mantis

New tools for IPM of thrips and aphids in lettuce

Inundative/inoculative releases of natural enemies using drones to control aphids and thrips in lettuce

Rotating cylinders with evenly spaced holes distribute predators at a consistent rate

Inundative/inoculative releases of natural enemies using drones to control aphids and thrips in lettuce

In-field releases of green lacewing and predatory mites

2 trials – aphid and thrips targeted

3 releases directly over crop field

Release of Orius sp. over insectary plantings

1 trial – thrips targeted
1 release over insectary
planting

Release of Orius sp and predatory mites over ice plant

1 trial – thrips targeted2 releases over noncrop area

Precision insecticide sprays in improve application of aphidtargeted materials

Same per acre rate, different per plant rate

Precision insecticide sprays in improve application of aphidtargeted materials

Rates experiment

2 trials

- 2 products tested
- 2 application systems
- 3 application rates
- Timing of applications consistent

Extended Control experiment

2 trials

- 2 products tested
- 2 application systems
- 2 application rates
- 2 application timings

Application rate experiment

Conventional romaine lettuce 2 weeks postplanting \rightarrow spray band covers ~ 10% of the bed

2 pesticide applications spaced 10-14 days apart

Random complete block design with 8 treatments + untreated control

5 replications per trial x 2 trials

- 2 chemistries
- Spirotetramat
- Thiamethoxam

Thiamethoxam Precision

Applied at 5.5, 1.8 and 0.55 oz/acre

Thiamethoxam Broadcast

Applied at 5.5 oz/acre

Spirotetramat Precision

Applied at 5, 1.7 and 0.5 oz/acre

Spirotetramat Broadcast

Applied at 5 oz/acre

Treatment table with per acre and per plant rates for each application

Treatment	Application method	Insecticide	rate per acre (oz/acre)	rate per plant (mg/plant)	notes
1	Untreated control	none			
2	Broadcast spray	Spirotetratmat	5	0.22	label max
3	Precision spray	Spirotetratmat	5	2.2	label max
4	Precision spray	Spirotetratmat	1.7	0.73	label max / 3
5	Precision spray	Spirotetratmat	0.5	0.22	label max /10
6	Broadcast spray	Thiamethoxam	5.5	0.24	label max
7	Precision spray	Thiamethoxam	5.5	2.4	label max
8	Precision spray	Thiamethoxam	1.8	0.8	label max / 3
9	Precision spray	Thiamethoxam	0.55	0.24	label max / 10

Aphid pressure over time

Aphid pressure over time, controls excluded

INSECTICIDE application and coverage

Drop Nozzles and Higher Gallonage Applications Improve Aphid Control on Lettuce

Sketch of regular sprayer manifold in use by commercial applicators for row-crop insect control, above, compared with improved drop-nozzle design, below, which sprays upward from bottom of rows for better coverage of under sides of leaves.

J. E. DIBBLE

F

Resistance monitoring – leaf dip assay

Logo, Heather @unhingedheather

Chlorantraniliprole Coragen (diamide)

Resistance ratio

Cyantraniliprole Exirel (diamide)

Cyantraniliprole Exirel 50 (diamide) 40 Resistance ratio 30 20 10 0 53117352022022 ×21100 831222 Conoillo 2022 50120202 Costonie 202 Greenel 202 Cursos 202 Constillo 2022 53110522022 Course 202 Curron 202 Concelling 2027 Kingo City 2022 531×2012 1022 O^{als}O² Otrosolit A10000202 Sologo 2022 Modero Solution Solution

Chlorantraniliprole vs. Cyantranilprole

Emamectin benzoate Proclaim

Emamectin benzoate Proclaim

Resistance ratio

Indoxacarb Avaunt

20 15 Resistance ratio 10 5 0 X34 M000 231022 531105,2022,2022 George Creek Constillo 202 Cost of the Cold Culon: 2022 000/01/2022 501202 2010 2010 2010 41000000000 Conoillo 2022 50110522022 50000000

But....LC₅₀'s closer to label rate

Spinetoram Radiant (spinosyn)

Resistance ratio

Bacillus thuringensis/ Bt – aizawai XenTari

Special thanks to:

- Frank Heffren, Green Valley Farms/Pinnacle Spray, and Mantis Ag Technology
- Parabug, Jaclyn and Chandler Bennett
- Grettenberger/Hasegawa lab personnel
- Industry cooperators/FMC
- PCA/grower cooperators

Acknowledgements:

CA DPR: Disclosure statement – Funding for this project has been provided in full or in part through a Grant awarded by the Department of Pesticide Regulation.

PARABUG

Questions?