Daniel K. Hasegawa Research Entomologist USDA-ARS, Salinas CA

Agricultural Research Service

Pest Management Meeting 12/5/2023

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

Temperature and precipitation: 2000-2023

CIMIS Station 116: Salinas North

Temperature and precipitation: 2000-2023

CIMIS Station 116: Salinas North

Thrips monitoring: 2019 – 2023

Thrips/Sticky Card/Week (Salinas Valley Averages)

Desktop version: <u>https://salinaspestmap.shinyapps.io/salinas-pestmap/</u> **Mobile version:** <u>https://salinaspestmap.shinyapps.io/salinas-pestmap-mobile/</u>

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

Thrips nursery sampling

Dr. Kirsten Pearsons UCCE

Slide provided by Kirsten Pearsons

Thrips nursery sampling

March – August 2023

Thrips populations in nurseries followed Salinas Valley trends

Highest adult densities on conventional cauliflower and organic broccoli, sampled in July

Slide provided by Kirsten Pearsons

731 adult thrips tested ~98.7% western flower thrips ~1.64% positive for INSV (no TSWV)

Slide provided by Kirsten Pearsons

<u>399 larvae tested</u> ~99.6% western flower thrips None positive for INSV (no TSWV)

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

INSV + Pythium infections

Dr. JP Dundore-Arias, Karla Jasso, M.S. student California State University Monterey Bay

Field trials

- 6 fields in 2022
- 7 fields in 2023

Weekly evaluations

- Foliar and root symptoms
 - INSV: leaf necrosis
 - Pythium Wilt: wilting of leaves
- Diagnostics
 - INSV: TAS-ELISA (leaves + roots)
 - Pythium spp.: Culturing (roots)
 - N=20 plants

New tools for quantifying INSV and *P. uncinulatum*

Multiplex qPCR

Viviana Camelo Postdoc, USDA-ARS

Frank Martin USDA-ARS

Austin McCoy Timothy Miles Martin Chilvers Michigan State University

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

Novel peptides for managing western flower thrips and diamondback moth

2.5 years: (2022 - 2025)

- <u>Phase 1 (Discovery)</u>: Identification and expression of receptors that are specific to western flower thrips (WFT) and diamondback moth (DBM),
- <u>Phase 2 (Synthesis)</u>: Screen, design, and synthesize bioactive peptides that selectively bind to and disrupt WFT and DBM GPCRs, and
- <u>Phase 3 (Efficacy)</u>: Evaluate the efficacy of bioactive peptides on WFT and DBM survival.

TECHNOLOGY

PEST MANAGEMENT ...

PEST MANAGEMENT

New technology for environmentally safe pest control discovered

"Receptor interference" technology disrupts the vital processes needed for fire ants to survive

Dr. Manny Choi Research Entomologist, USDA-ARS Corvallis, OR

Laura Hladky Lab Tech, USDA-ARS

Juan Vargas USDA-ARS, Salinas CSUMB undergrad

PUBLISHED ON AUGUST 29, 2021

Novel peptides for managing western flower thrips and diamondback moth

2.5 years: (2022 - 2025)

- <u>Phase 1 (Discovery)</u>: Identification and expression of receptors that are specific to western flower thrips (WFT) and diamondback moth (DBM),
- <u>Phase 2 (Synthesis)</u>: Screen, design, and synthesize bioactive peptides that selectively bind to and disrupt WFT and DBM GPCRs, and
- <u>Phase 3 (Efficacy)</u>: Evaluate the efficacy of bioactive peptides on WFT and DBM survival.

fornia Environmental Protection Agencu

Western flower thrips

Diamondback moth

Dr. Manny Choi Research Entomologist, USDA-ARS Corvallis, OR

Laura Hladky Lab Tech, USDA-ARS

Juan Vargas USDA-ARS, Salinas CSUMB undergrad

Fluorescence (Receptor binding)

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

Improved methods for trapping and monitoring thrips

Which thrips have INSV?

Deena Husein Postdoc, USDA-ARS

Field testing 3D-printed thrips traps

Deena Husein Postdoc, USDA-ARS

Laura Hladky Lab Tech, USDA-ARS

Field testing 3D-printed thrips traps

Deena Husein Postdoc, USDA-ARS

Laura Hladky Lab Tech, USDA-ARS

Shulu Zhang Postdoc, USDA-ARS

Field testing 3D-printed thrips traps

- 1. 2023 observations: weather, weeds, thrips, INSV
- 2. Thrips nursery sampling
- 3. New tools for detecting INSV and Pythium
- 4. Peptide technologies for managing thrips and diamondback moth
- 5. Improved methods for trapping and monitoring thrips

Thank you!

daniel.hasegawa@usda.gov

Hasegawa Lab, USDA-ARS, Salinas, CA

- Lab Technician: Laura Hladky
- Postdocs: Viviana Camelo, Shulu Zhang, Deena Husein
- **Biological Science Aids (CSUMB undergrads): Kiara Gable, Kai** Larrieu, Jasmin Azad-Khan, Chaela Hicks, Juan Vargas, Grace Hardy, Lisette Godinez-Rivera, Suzette Segoviano-Quiroz, Ulisses Peralta-Diaz

USDA-ARS, Salinas, CA Bill Wintermantel, Aaron Rocha, Frank Martin

University of California Cooperative Extension, Monterey County Richard Smith, Kirsten Pearsons, Alejandro Del-Pozo (Virginia Tech)

California State University Monterey Bay (CSUMB) JP Dundore-Arias, Karla Jasso, Cecilia Diaz

University of California Davis Ian Grettenberger

Growers, PCAs, CCAs, other industry members and stakeholders

Grower-Shipper Association of Central CA Chris Valadez, GSA President Mary Zischke, INSV/PW Task Force leader

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

