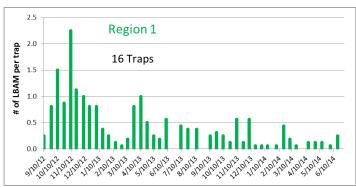
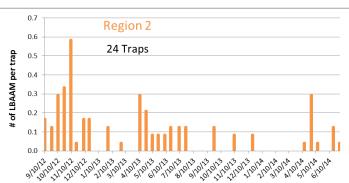
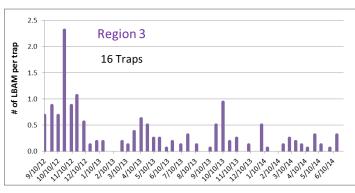
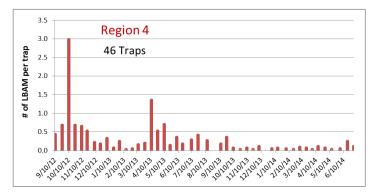
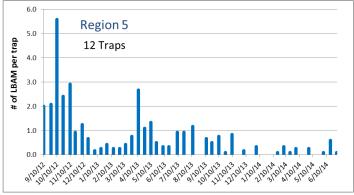

The Light Brown Apple Moth (LBAM) is an important invasive pest for California, and has become established throughout much of California's central coast. It is a regulated pest in ornamental and fruit crops important to the central coast economy. The University of California Cooperative Extension (UCCE) in Santa Cruz County conducts research in Santa Cruz and Monterey counties to aid in LBAM detection and management. UCCE has been trapping LBAM in and around wholesale nurseries, apples, and berries since 2009.


The graphs below represent actual trap data from current research where we are monitoring LBAM population dynamics in natural vegetation and weeds surrounding some local production nurseries and berry fields. Five research regions were chosen based on the occurrence of LBAM around production nurseries and berry crops in the areas. LBAM-pheromone baited Jackson traps trap only male LBAM moths and bucket traps (baited with terpinyl acetate and brown sugar solution) trap both male and female adult moths. Traps are checked and maintained every two weeks. LBAM has no diapause or dormant, over-wintering state, but rather usually survives as smaller, multi-stage larvae until the spring when they pupate and emerge as adults. The lack of diapause causes overlapping generations throughout the year, with multiple life-stages present at any one time, making it more difficult to identify the biofix date essential in pest forecasting. Biofix dates are based on specific biological events such as planting dates, first trap catch, or first occurrence of a pest (UCIPM website).


The data provided in these graphs can be used by growers to implement LBAM management programs. Regional biofix information can be used to improve the efficiency of control measures by allowing for more accurate timing of treatments. For example, using a biofix date and degree-day information, growers could reasonably predict the presence of adult migration, egg laying, and subsequent life stages in the field. See the UC IPM website for more information. In the near future, we anticipate having degree-day information posted along with updated trap data. Stay tuned.


The information provided is to be used and interpreted independently by each grower and the UCCE is not responsible for the outcome of actions taken based on the information presented. For questions, contact Neal Murray at nbmurray@ucanr.edu or Steve Tjosvold at satjosvold@ucanr.edu. This research was funded by a Specialty Crop Block Grant (CDFA/USDA).





Comments and Analysis

Average trap counts were back down this last week making it difficult to predict adult flight timing. Please stay vigilant as a significant larvae population may still be present.

Larval collection remained the same as the two weeks before indicating some degree of overlap in generations.

Despite higher traps counts the past few weeks peak flight may still be difficult to predict, since overlapping generations are exacerbated during summer months.

Mating disruption dispensers should already be in place and thorough scouting should be utilized to look for feeding larvae.

LBAM host data from perimeter scouting in Santa Cruz and Monterey Counties						
Host Common Name	Scientific Name	# LBAM Found	% of Total			
French Broom	Genista monspessulana	95	18.7%			
Coyote Bush	Baccharis pilularis	82	16.1%			
Dovefoot Geranium	Geranium molle	53	10.4%			
Wild Radish	Raphanus raphanistrum	36	7.1%			
Buckhorn Plantain	Plantago coronopus	35	6.9%			
Horse Weed	Conyza canadensis	31	6.1%			
Fireweed	Epilobium ciliatum	25	4.9%			
Curly Dock	Rumex crispus	21	4.1%			
Hedge Mustard	Brassica spp.	18	3.5%			
California Burr Clover	Medicago polymorpha	16	3.1%			
Smartweed	Polygonum punctatum	13	2.6%			
Vinca Periwinkle	Vinca major	13	2.6%			
California Blackberry	Rubus ursinus	12	2.4%			
California Mugwort	Artemisia douglasiana	10	2.0%			
Coast Live Oak	Quercus agrifolia	9	1.8%			
Morning Glory	Calystegia spp.	7	1.4%			
Miner's Lettuce	Claytonia perfoliata	6	1.2%			
Canyon Gooseberry	Ribes menziesii	4	0.8%			
Coffee Berry	Rhamnus californica	4	0.8%			
Himalayan Blackberry	Rubus armeniacus	4	0.8%			
Common Wild Oats	Avena fatua	2	0.4%			
Poison Hemlock	Conium maculatum	2	0.4%			
Little Mallow	Malva parviflora	2	0.4%			
Common Mallow	Malva sylvestris	2	0.4%			
Carolina Geranium	Geranium carolinianum	1	0.2%			
White Clover	Trifolium repens	1	0.2%			
Black Nightshade	Solanum americanum	1	0.2%			
Cutleaf Plantain	Plantago coronopus	1	0.2%			
Arroyo Willow	Salix lasiolepis	1	0.2%			
Scarlet Pimpernel	Anagallis arvensis	1	0.2%			
English Ivy	Hedera helix	1	0.2%			

Perimeter scouting data from October 2011 to present. The perimeter vegetation of eight properties (wholesale nurseries and berry fields) are scouted for leafrolls and larvae. Larvae are collected and reared to adults for positive identification. The data represents all positively identified LBAM larvae and their associated hosts.

Example

Accumulated Degree-days

October 9th to December 9th, 2012

	Air ter	nn(°F)	Degr	ee-days
Date	Min	Max	Daily	Accumulated
Oct 08 2012	44	69	11.6	11.6
Oct 09 2012	50	72	16.0	27.6
Oct 10 2012	56	67	16.5	44.1
Oct 11 2012	54	59	11.5	55.6
Oct 12 2012	54	65	14.5	70.1
Oct 13 2012	47	73	15.0	85.1
Oct 14 2012	49	76	17.5	102.6
Oct 15 2012	50	76	18.0	120.6
Oct 16 2012	52	79	20.5	141.1
Oct 17 2012	48	87	22.5	163.6
Oct 18 2012	58	87	27.5	191.1
Oct 19 2012	58	70	19.0	210.1
Oct 20 2012	49	67	13.0	223.1
Oct 21 2012	42	65	9.0	232.1
Oct 22 2012	51	63	12.0	244.1
Oct 23 2012	42	62	7.5	251.6
Oct 24 2012	41	65	8.7	260.3
Oct 24 2012 Oct 25 2012	52	71	16.5	276.8
Oct 26 2012	44	72	13.1	289.8
	44			
Oct 27 2012 Oct 28 2012	48	78 76	18.0 17.0	307.8 324.8
	52	76		
Oct 29 2012 Oct 30 2012	52	73	17.5 16.0	342.3 358.3
Oct 31 2012	55	62	13.5	371.8
Nov 01 2012	57	63	15.0	386.8
Nov 02 2012	47	68	12.5	399.3
Nov 03 2012	45	79	17.0	416.3
Nov 04 2012	51	85	23.0	439.3
Nov 05 2012	56	95	29.2	468.6
Nov 06 2012	53	78	20.5	489.1
Nov 07 2012	52	56	9.0	498.1
Nov 08 2012	41	63	7.7	505.8
Nov 09 2012	40	57	4.7	510.5
Nov 10 2012	33	61	5.5	516.0
Nov 11 2012	33	64	6.8	522.8
Nov 12 2012	37	68	9.3	532.1
Nov 13 2012	49 53	76	17.5	549.6
Nov 14 2012		78	20.5	570.1
Nov 15 2012	45	69	12.0	582.1
Nov 16 2012	49	65	12.0	594.1
Nov 17 2012	56	62	14.0	608.1
Nov 18 2012	46	62	9.0	617.1
Nov 19 2012	45	65	10.0	627.1
Nov 20 2012	45	66	10.5	637.6
Nov 21 2012	43	64	8.8	646.3
Nov 22 2012	42	63	8.0	654.3
Nov 23 2012	45	76	15.5	669.8
Nov 24 2012	46	76	16.0	685.8
Nov 25 2012	40 39	65	8.5	694.3
Nov 26 2012		60	5.9	700.2
Nov 27 2012	48	61	9.5	709.7
Nov 28 2012	46	63	9.5	719.2
Nov 29 2012	45	61	8.0	727.2
Nov 30 2012	57	63	15.0	742.2
Dec 01 2012	56	66	16.0	758.2
Dec 02 2012	52	63	12.5	770.7
Dec 03 2012	47	61	9.0	779.7
Dec 04 2012	49	60	9.5	789.2
Dec 05 2012	56	63	14.5	803.7
Dec 06 2012	48	61	9.5	813.2
Dec 07 2012	44	63	8.6	821.8
Dec 08 2012	38	64	7.6	829.4
Dec 09 2012	40	68	9.9	839.3

Accumulated degree-days calculated using the degree-day calculator on the <u>UC IPM website</u>.

Min/Max temperature data gathered from CIMIS weather station in Pajaro, Ca.

Degree-day Requirements for LBAM Development

DD needed to complete life stage		
Egg	235	
Larvae	685	
Pupae	235	
pre-oviposition	50	
Total DD	1205	

To calculate accumulated degree-days, choose either the historical data method (1) or current data (2) from the degree-day calculator, and then use the historical model for forecasting.

1.) To learn more about using the historical degree-day method for pest forecasting, go to:

http://cesantacruz.ucanr.edu/files/157930.pdf.

2.) To learn more about using the degreeday calculator to calculate accumulated degree-days go to:

http://cesantacruz.ucanr.edu/files/157929.pdf.

To view previous postings to this website please click the link below.

