Assessing the Impact of Nitrogen Fertilizer Amounts and Sources on Strawberry Yield and Shelf Life

Andre Biscaro,
Irrigation and Water Resources Advisor
University of California Cooperative Extension, Ventura County
Context of Nitrogen Management for Strawberry production in Ventura County:

- Concerns with environmental contamination and regulations; NMP requirement
- Concerns with fruit quality and shelf life
- $\text{NO}_3^- \text{ vs NH}_4^+$-based fertilizers
- Concerns that N-induced excessive vegetative growth can reduce yields
- Crops are often under-fertilized and yields reduced to avoid excessive vegetative growth and shelf life issues
- Limited N uptake information in Ventura County (restricted funds availability)
- Cultivars may respond differently to varying N amounts
- Long season (approx. 9 months), variable rainfall
Strawberries in general:

- Sensitive to mild water stress (increased irrigation frequency)
- Shallow, or relatively shallow root system
- Usually grown on well-drained soils
- High-value crop; small yield losses can cause significant impact on returns

Most soil N is in the form of nitrate
- Nitrate is very soluble in water
- Nitrate is weakly held in the soil CEC

Typical number of irrigation events: 50-60

https://apps1.cdfa.ca.gov/fertilizerresearch/docs/Nitrate_Tool.html
A majority of agriculture wells on the Central Coast are contaminated with nitrate.
Nitrogen Use Reporting

Responsibility Areas

Farm Bureau of Ventura County:
http://www.farmbureauvc.com/issues/water-issues/water-quality/management
Establishment,
up to 1/3 of crop cycle

- Very little N uptake
- Little water demand, but high susceptibility to water stress
- Shallow root system

Remaining 2/3

- Constant N uptake rate (predictable)
- Increasing water demand
- Increasing and deeper root system

Right Rate
Right Time
Objectives

➢ Quantify yield and shelf-life responses do distinct N fertilization amounts

➢ Quantify yield and shelf-life responses do ammonium and nitrate-based fertilizers

➢ Determine if increased vegetative biomass decreases yield
Material and Methods

✓ 6 treatments: 3 rates (low, medium and high), 2 fertilizers (CN9 and AN20)
 CN9 = Calcium nitrate (93.5% NO$_3$-N, and 6.4% NH$_4$-N) + 11% Ca
 AN20 = Ammonium nitrate (50% NO$_3$-N and 50% NH$_4$-N)

✓ Treatments were fertigated on average every 17 days

✓ Cultivars: Fronteras and Proprietary cv.

✓ 64 in bed, two high-flow tapes, planted on October 8, 2018

✓ No pre-plant fertilizer applied

✓ Soil NO$_3$-N before planting: 2.4 ppm at 0-12 in depth

✓ Soil Ca: 17.3 meq/100g

✓ Soil: Hueneme sandy loam
Material and Methods

- Experimental design: randomized complete block, replicated four times; 30 ft long and 1 bed wide plots

- Soil, leaf blades and fruits were sampled periodically (5 times) and analyzed for total N and Ca concentrations

- Total drip-applied water: 14.0 in; total precipitation: 16.8 in;

- Canopy cover and vegetative biomass

- 42 harvest events: marketable and unmarketable yield and berry weight

- Shelf life: fruit firmness, weight loss, mold, leakage at 0, 4, 8 and 12 days (St Francis Cooler, Oxnard). March, April and June

- Cooler Temperature: 33F, Relative humidity: 86%
Treatments

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>----- lbs N/ac/week -----</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Early season (Oct-Feb)</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Late season (Mar-May)</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>------- lbs N/ac -------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Total applied (Oct 8-May 31)</td>
<td>118</td>
<td>208</td>
<td>298</td>
</tr>
</tbody>
</table>

Applied as CN9 and as AN20
Treatments

Cumulative Fertilizer Rates of Treatments and Rainfall Events

- Low
- Medium
- High

Rainfall (in)

Lbs N/ac

- Soil and leaf blade sampling events
- Fruit sampling and shelf-life assessment events
Early season, lower rates

Mid-late season, higher rates
Plot map:
Results
Total Marketable Yield, Fronteras

F
5.58
Prob > F 0.0037

Boxes/acre

Low Medium High Low Medium High

------------------- CN9 -------------------

------------------- AN20 -------------------
Marketable Yield, Fronteras

December to February

March to June

Boxes/acre

Low | Medium | High

Low | Medium | High

CN9

AN20
Total Marketable Yield, Proprietary cv.

![Boxplot showing the total marketable yield for different levels of CN9 and AN20.

- **CN9**: Low, Medium, High
- **AN20**: Low, Medium, High

The yields are measured in boxes/acre. The boxplot indicates the distribution of yields for each level with significant differences indicated by different letters (a, ab, b). The F-value is 3.29 with a Prob > F of 0.0292, suggesting a statistically significant difference among the levels.]
Concentration of Leaf Blade Nitrogen, Fronteras

- Low CN9
- Medium CN9
- High CN9
- Low AN20
- Medium AN20
- High AN20

Total N (%)

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 25-Apr 25-May
Concentration of Leaf Blade Nitrogen, Fronteras

- Low CN9
- Medium CN9
- High CN9
- Low AN20
- Medium AN20
- High AN20

Total N (%)

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 25-Apr 25-May
Concentration of Leaf Blade Nitrogen, Proprietary cv.

Total N (%)
Soil Mineral Nitrogen (NH4 + NO3), Proprietary cv.

N (ppm)

Low CN9 Medium CN9 High CN9
Low AN20 Medium AN20 High AN20

University of California
Agriculture and Natural Resources
NO₃-N at 12-24 in depth

ppm

- Fronteras
- Proprietary cv.

Low CN9 Medium CN9 High CN9 Low AN20 Medium AN20 High AN20
All cultivars soil pH, 0-12in depth
Canopy Coverage

Fronteras

- Jan: Low CN9, Medium CN9, High CN9
- Mar: Low AN20, Medium AN20, High AN20
- Apr: Low CN9, Medium CN9, High CN9
- May: Low AN20, Medium AN20, High AN20
- Jun: Low CN9, Medium CN9, High CN9

Proprietary

- Jan: Low CN9, Medium CN9, High CN9
- Mar: Low AN20, Medium AN20, High AN20
- Apr: Low CN9, Medium CN9, High CN9
- May: Low AN20, Medium AN20, High AN20
- Jun: Low CN9, Medium CN9, High CN9
Fronteras, Dry Aboveground Biomass (grams/8 plants)
Yield vs Vegetative Biomass, Fronteras

R² = 0.9675
Proprietary cv., Dry Aboveground Biomass (grams/8 plants)
Yield vs Vegetative Biomass, Proprietary cv.
Shelf Life Results

✓ Treatments did not affect fruit firmness, mold, leakage and berry weight; no trends observed

✓ Leakage and mold were observed in June at 8 and 12 days, but data is inconclusive
Summary

✓ Fronteras yield for Medium and High AN20 was very similar and significantly greater than Low CN9 and Low AN20. All other differences were not statistically significant.

✓ Cull rate and shelf life were not affected by fertilizer rates and sources.

✓ Significantly high precipitation amounts were atypical and most likely influenced results.

✓ Fronteras yield was clearly correlated with vegetative biomass; proprietary cv. was not.
Nitrogen and Calcium content in whole fruits was not affected by fertilizer rates and sources; calcium content in leaf blades was not affected by treatments in both cultivars.

Concentration of leaf blade N was significantly affected by treatments in March, April and June samplings.

There were significant differences in cultivar response to treatments. Research is needed for other cultivars.
Other observations:

✓ Ca in the leaf blades and fruits were very similar and didn’t present a trend between fertilizer types (CN9 vs. AN20)

✓ Overall leaf blades nutrient content in June were greater for AN20; Mn was significantly (P<0.05) greater for AN20 than CN9 for both cultivars

✓ Soil pH differences between fertilizer types and rates at crop termination were minimal (<0.02) and not statistically significant
Acknowledgements:

- Crisalida Berry Farms: David Murray, Matt Conroy, Raul Coronado, Constancio Garcia and Chino
- Tim Hartz, UC Davis Extension Specialist, Emeritus
- Richard Smith, UC Cooperative Extension Advisor, Monterey County
- Alli Rowe, Anthony Luna and Gina Ferrari (UCCE Ventura)
- Yara North America Inc.
- Thelma Hansen Funds
- St. Francis Cooler
Questions/comments?