Spot Steam Application in Strawberry

STEVE FENNIMORE, UNIVERSITY OF CALIFORNIA, DAVIS

AT SALINAS, CA

UCCE Ventura May 19, 2023

Acknowledgements

- Thanks to supporters:
 - USDA NIFA Methyl Bromide Transitions
 - USDA ARS Areawide project
 - USDA NIFA Crop Protection and Pest Management Program
 - Propane Education and Research Council
- Driscoll's, Reiter Affiliated Co., Soil Steam International,
- Oleg Daugovish, Jenny Broome, Kelly Ivors,
- Oddbjørn Bergem, Peter Henry, John Rachuy

Definition of soil disinfestation

- Reduction of the pest community in the soil to a level that will permit profitable crop production.
- A "kill step" used to control soil pests

Methods of soil disinfestation

- Soil fumigants
- Heat
 - Solarization
 - Steam 158°F for 20 min
- ASD

How soil steaming works

- 1. Inject steam into the soil to raise soil temperature to 158°F for 20 minutes. Objective is pasteurization not sterilization.
- 2. Steam transfers heat from heat source to target soil particles
- 3. When steam contacts cold soil particles, steam molecules condense releasing heat to the soil particles
- 4. Steam kills the pathogens in an around the soil particles
- 5. Steam also kills weed seeds and nutsedge tubers

Why choose steam for soil disinfestation?

- 1. It kills soil pests
- 2. No one owns it
- 3. Not a pesticide is a device
- 4. Is a sanitation treatment organic compliant
- 5. Is flexible and safe
- 6. No buffer zones, township caps, or notifications
- 7. Unlike fumigants, no plastic mulch needed after treatment

Seed lines disinfested with steam

Seed lettuce into the disinfested band

Weed emergence and lettuce drop inoculum is reduced in intra-row Weeds outside seedline can be cultivated out.

Weed control by species

- Purslane 99%
- Shepherd's-purse, nettleaf goosefoot 88%
- Burning nettle, henbit, pigweed 100%
- Little mallow 42%

Weed densities & hand weeding times in lettuce with band steam

Treatment	Weed densities	Weed time
	1,000/A	Hr/A
Steam	103 b	22 b
No steam	1080 a	39 a

Pythium ultimum control before & after steaming

Treatment	Before	After
	CFU/g soil	
Steam	563	77 b
No steam	528	320 a
P-value	0.447	0.0198

New concept for a steam applicator

Soil Steam International – "Field Saver"

Objective of the prototype

- Determine if treating the plant hole with steam is adequate
- Test a design for an autonomous spot steam applicator for strawberry beds
- Being developed by Soil Steam International, Sandefjord, Norway <u>https://soilsteam.com/</u>

Fruit field evaluation

Steam disinfestation in a fruiting field

- Treatments included steam, and a control
- Treatments were replicated 4 times and arranged in a RCBD
- Data collected were soilborne pest control, weed control and fruit yield
- Trials in Oxnard, Salinas and Watsonville

Steam

Control

O. Daugovish

Oxnard – Fusarium oxysporum

P. Henry

Oxnard – Cumulative fruit yield through 12.12.22

3000 2500 2000 1500 1000 500 0 Steam control ■ G/plant

O Daugovish

Grams fruit per plant

Oxnard – Weeds # per 20 plant holes

Weeds

Watsonville– Weeds # per 32 plant holes – through 4.4.23

Weeds

Pythium control- Salinas 2022

Treatment	River Rd	Spence
	% reduction	
No steam control	0 b	0 a
Steam	99 a	98 b

Steam disinfestation in a fruiting field - summary

- Steam was very effective in controlling weeds and Pythium spp.
- Steam suppressed *Fusarium* at Oxnard
- Steam suppressed *Macrophomina* at Watsonville
- Fruit yield from steam treatments was vastly higher than the control at Oxnard
- Yields will be collected from the Salinas and Watsonville sites during the upcoming season

Strawberry Herbicide Evaluation

Embed Extra

- Clover control in strawberries is a challenge because fumigants and available herbicides are weak on these weeds
- Embed Extra is a low volatile formulation of 2,4-D. This herbicide has a lot of activity on clovers
- We tested it in 2021-22 as a directed spray in strawberry in collaboration with the IR-4 program
- Work was conducted at the Spence research farm near Salinas

Embed Extra - Details

- Embed Extra 3.8 EC is from Syngenta
- Embed Extra was tested at 2, 3 and 6 pints per acre
- Was applied Feb 23, and March 30, 2022.
- Trials were replicated 4 times
- Data collected were Crop injury, crop vigor, fruit yield and weed control.

Clover control with Embed Extra

 120

 100

 80

 60

 40

 20

 0

 Nontreated

 Embed 2 pt

 Embed 3 pt

 Embed 6 pt

control %

Strawberry vigor with Embed Extra

Vigor %

Strawberry Fruit Yield with Embed Extra

Fruit T/A

Embed Extra – recommendations

- Embed Extra can be safely used to control weeds in strawberry furrows
- Embed Extra at 3 pints per acre was safe to strawberry and provided effective control of clover
- IR-4 is working with Syngenta to possibly register this use for strawberry.