Crop termination and cover cropping to manage Macrophomina root rot in strawberry

Cooper Calvin^{1,2}

M.S. Student, Agriculture - Environmental Horticultural Sciences

Charlotte L.M. Decock³, Gerald J. Holmes^{1,2}, Shashika S. Hewavitharana^{1,2} ¹Plant Sciences Department, California Polytechnic State University, San Luis Obispo, CA ²Strawberry Center, California Polytechnic State University, San Luis Obispo, CA ³Natural Resources Management & Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA

Pathogen incidence as a percent of 93 total plant samples of the Oxnard growing region. (S. Simard, *unpublished*)

Macrophomina phaseolina

Pathogen suppressive microbiome

Fumigation

Crop termination

- Soil fumigant with herbicidal and fungicidal properties to kill pathogen, crop, and weeds
- Applied through drip irrigation

Gerald Holmes

Objectives

- Evaluate the pathogen suppressing potential of combining crop termination and cover cropping expressed as a reduction of Macrophomina root rot incidence.
- Unravel the mechanisms of cover crop mediated suppression of *M. phaseolina* as well as the improvement of soil and plant health from cover cropping.
- Lessen fumigant use in evaluated fields.
- Increase strawberry yields by improving soil health from cover cropping.

Conventional strawberry field post-cover crop

Materials and methods

Soil evaluations for *M. phaseolina*

Plant evaluations for *M. phaseolina*

Soil health and microbiome evaluations

Fruit harvest

Conventional soil trials Year 1 - pot trial

Four soil treatments						
Untreated soil	Untreated soil + wheat 'Summit 515'	C te + 'S	Crop erminated soil wheat Summit 515'	Crop terminated + flat fumigated soil		
Two strawberry cultivars						
Albion (very susceptible)		Royal Royce (moderately susceptible)				
Two concurrent trials in a RCBD						

2022

2023

Conventional soil trials Year 2 - field trial

Soil received a crop termination treatment pre-cover crop, and was flat fumigated post-cover crop

Two cover crop cultivars

Wheat 'SummitTriticale515''Pacheco'

Two strawberry cultivars

Portola (very
susceptible)Salma (very
susceptible)

2023

2024

Experimental design of the conventional field trial

Organic field trial

Two cover crop cultivars

Wheat	Triticale
'Summit 515'	'Pacheco'

Two strawberry cultivars

MontereyValiant(very(moderatelysusceptible)susceptible)

3 Feb 20123 to 2023

Organic field trial experimental design

Control	W	CT+W	CT+FF
Untreated soil	Untreated soil planted with wheat 'Summit 515'	Crop terminated soil planted with wheat 'Summit 515'	Crop terminated and flat fumigated soil

Results - conventional field trial

Results - organic field trial

Soil treatment

Organic field trial harvest

Soil health tests

Takeaways

• Cover cropping as a standalone treatment may not be enough to manage high *M. phaseolina* populations

- Could be part of an integrated approach with less intensive fumigants such as crop termination in less infested fields
- The cover crops only had one season to accumulate a beneficial microbiome

Future Research

- Plant and soil evaluations for *M. phaseolina* over the rest of the growing season for both the conventional and organic fields
- Soil health and microbiome analyses
- Cover crop and soil nutritional analyses

Acknowledgements

CSII The California State University

AGRICULTURAL Research institute

CALIFORNIA STRAWGERRY COMMISSION

Bryan Gresser, Art Magana, Adrian Gomez for grower accommodations

Cal Poly Strawberry Center Pathology Lab students and staff for diagnostic and sampling support

