'Biofumigation' potential of mustards

Oleg Daugovish, Jim Downer Michi Yamamoto, Maren Mochizuki, (UCCE-Ventura) Steve Fennimore, UC-Davis Greg Browne, USDA

Mustards: Brassicaceae family

- Excellent weed competitors
- Taproot breaks compaction
- Abundant fast-degrading biomass
- Drought tolerance, plasticity
- Support bees and natural enemies
- <u>Contain allelochemicals</u>

Pick your active ingredient

- Methyl ITC (active ingredient of Metham Sodium/Vapam)
- Allyl-ITC
- Phenyl-ITC

And other S – containing

- Dimethyl sulfide
- Methanethiol
- Unidentified

Methyl ITC (a. i. of Metham Sodium, Vapam)

- Vapam at 75 gal/ac \rightarrow 252 lb/ac ITC
- It will take 250 000 lb/ac of dry biomass of mustard (at ITC conc =1000 mg/kg) to match this
- Mustard in Ventura Co. produces 20-25,000 lb/ac (10%)
- Australia: 25%

Biofumigation

Green biomass	Seed products
High amounts of C and water	High C, 5% N
Low concentration of GSLs	High concentration of GSLs
Cheap – can be grown locally, need time to grow	Available from seed processors, often in Canada and PNW, \$

Biomass: How to make mustard ITC-s work for you?

- 1. High initial GSL concentration in plant
- 2. Break cells = release
- 3. Minimize losses = wet soil (aid hydrolysis)

Studies near Santa Paula, CA

5 treatments

- Faba/Bell bean
- Cereal mix
- Oriental mustard
- Yellow mustard
- Bare ground (control)

Breaking cells

Permeable bags with:

- Citrus Nematodes
- Sclerotinia minor
- •Weed seed:
- Burclover,
- Annual ryegrass,
- Red root pigweed
- Buried at: 12"

1.4" water: to trap and hydrolyze

Strawbery pathogens and weeds

At 15 and 30 cm (6 and 12")

- Phytophtora (P. cactorum)
- California burclover, little mallow, goosefoot
- Verticilium dahliae soil samples

Phytophtora: depth of burial – no effect

Phytophthora cactorum survival following biofumigation

Severe overgrowth with *Pythium* spp. after mustards

Verticillium dahliae in soil following biofumigation

Changes in microbiological activity

Factor	Soil microbial activity	
	(µg fluorescein hydrolyzed per g soil per h)	
Cover crop (<i>P</i> <0.0001)	·	
Bareground	0.084 bc	
Bell bean	0.163 bc	
Triticale	0.662 ab	
'BQ Mulch'тм	0.754 a 🕳	
'Ida Gold'	0.933 a ←	
'Pacific Gold'	1.023 a ←	
Residue (P=0.07)		
1x	0.513 b	
2x	0.694 a 👝	

Composition of glucosinolates: above-ground

1

Composition of glucosinolates: roots

Mustard seed meal

Treatment	Rate/ description	Weed densities	Albion	Ventana
		No. (1,000/Acre)	g/plant	
1. Untreated	0	1,322 a	542.6	699.3
2. MBPic 67:33	350 lb/A	49 d	784.2	877.4
3. Steam	70°C 30 min.	29 d	775.0	1017.3
4. Muscodor	2000 lb/A	261 cd	518.7	629.4
5. Brassica meal	2000 lb/A	822 b	743.3	996.8
6. Furfural	600 lbs/A	702 bc	872.7	640.0
7.Fludio. + Ridomil	1 pint + 0.5 lb/A	432 bcd	572.3	863.5
8. Stabilized Urea ¹	300 lbs/A	374 bcd	619.8	651.0
9.Steam+ AgroThrive	70°C 30 min. + 150 lb/A	12 d	648.1	889.9
10. AG3 (NP)	75 GPA	776 b	418.8	598.9
LSD (P=.05)		500	298.0	351.0
Treatment Prob.		0.0001	0.094	0.128

Fennimore et al.

Plant diameters, 7 Jan., 2010

Red fruit counts, cumulative of 2 picks, Feb. 2010

No significant differences between Biofence and untreated control in:

- Plant mortality,
- Weed number

24 Dec., 2010

Use of Brassica seed meal products:

- How much to apply to get the effect?
- Is it feasible?
- Effect on known soil pathogens?