Vinegar flies in CA strawberries: Species Identification & insecticide resistance monitoring

Brian Gress

Previous: Zalom Lab, UC Davis

Current: California Department of Food & Agriculture

BACKGROUND – SPOTTED WING DROSOPHILA

- SWD is an invasive vinegar fly, arrived in CA in 2008 from SE Asia
- First found in strawberry & caneberry fields in Watsonville
- Severe economic pest of raspberries, blackberries, blueberries & cherries
- Females have serrated ovipositor used to lay eggs into firm, stillripening fruit

BACKGROUND – STRAWBERRY SUSCEPTIBILITY

- Fresh market strawberries may be protected from SWD by cultural practices & chemical controls
 - Short harvest intervals
 - spinosad & malathion
- Strawberries for processing are allowed to ripen in the field & insecticide applications stop
- Can lead to vinegar fly infestation & rejected shipments if detected
 - Impact of SWD unknown

RESEARCH GOALS

- 1) Assess ripe & overripe processing fruit for larval infestation
- 2) Determine the relative abundance of species causing infestation at each developmental stage

Studies to be replicated in 3 main CA growing regions: Oxnard, Santa Maria & Watsonville

METHODS

 Collect at least 40 ripe and 20 overripe strawberries from 3-4 field sites per region

Oleg Daugovish

Peter Shearer

METHODS

• Sampled at least 40 ripe and 20 overripe strawberries from 3-4 field sites per region

METHODS

- Sampled at least 40 ripe and 20 overripe strawberries from 3-4 field sites per region
- Used morphological characteristics to ID to species

■SWD ■other

INSECTICIDE RESISTANCE IN CA SWD

- Low to moderate levels of spinosad resistance emerging in Watsonville region
- Able to tolerate 5-12 x higher concentrations than susceptible SWD
- Significant increase in resistance observed after 5 generations of laboratory selection (~8-17 x)

Strain	LC50	SE	RR _w	RR _s
Susceptible (MI)	13.1	5.3	0.44	1
Wolfskill (untreated)	29.4	7.2	1	2.2
Watsonville	152.6	40.6	5.2	11.6
Watsonville-select	227.6	46.0	7.8	17.4

INSECTICIDE RESISTANCE IN CA SWD

Low to moderate levels of									
spinosad resistance emerging in	Strain	LC50	SE	RRw	RR _s				
Is resistance to malathion beginning to emerge in CA									
SWD populations?									
SWD	Watsonville	152.6	40.6	5.2	11.6				
• Significant increase in resistance	Watsonville-select	227.6	46.0	7.8	17.4				

 Significant increase in resistance observed after 5 generations of laboratory selection (~8-17 x)

METHODS – MALATHION LARVAL BIOASSAYS

- Sampled SWD from two locations in CA
 - Commercial caneberry fields in Watsonville
 - USDA Wolfskill Germplasm repository (untreated)

METHODS – MALATHION LARVAL BIOASSAYS

- Sampled SWD from two locations in CA
 - Commercial caneberry fields in Watsonville
 - USDA Wolfskill Germplasm repository (untreated)
- Allowed females to lay eggs in food bottles & treated larvae with malathion 4 days later
 - LC50, LC90x2 & water (control)
- Counted SWD that emerged as adults

RESULTS – WATSONVILLE LARVAE (MALATHION)

RESULTS – WATSONVILLE LARVAE (MALATHION)

CONCLUSIONS

- Vinegar fly larvae were present in fruit from all stages and locations
 - SWD comprise between 5% and 100% of total larval load
 - Likely enter fruit first & create opportunities for other species (D. simulans)
- Spinosad & malathion resistance could create problems in fresh market crop
 - Cultural practices may help prevent
- Tolerance to both insecticides already present in commercial CA fields
- Susceptibility will likely further decline with continued field exposure

ACKNOWLEDGEMENTS

Frank Zalom

Oleg Daugovish

Mark Bolda

Undergraduate researcher

Chase Matterson

Peter Shearer

Joanna Chiu

USDA

United States Department of Agriculture

pesticide consultation
& analysis