Optimizing Anaerobic Soil Disinfestation (ASD) for California Strawberries

C. Shennan¹, J. Muramoto¹, G. Baird¹, M. Mazzola², M. Bolda³, S. T. Koike³, O. Daugovish³, S. Dara³, K. Klonsky⁴, G. Lazarovits⁵, E. Rosskopf⁶, N. K. Burelle⁶, D. Butler^{6,7}, S. Fennimore⁴ and J. Samtani⁴

¹Univ. of California, Santa Cruz
²USDA-ARS, U.S. Tree Fruit Lab, Wenatchee, Washington
³Univ. of California, Cooperative Extension
⁴Univ. of California, Davis
⁵A&L Biologicals, ON, Canada
⁶USDA-ARS, U.S. Horticultural Research Lab, Fort Pierce, Florida
⁷Univ. of Tennessee, Knoxville

Funded by USDA-CSREES MBTP 2007-51102-03854, 2010-51102-21707, 2012-51102-20294 and the California Strawberry Commission

Acknowledgements

- Dole Food Company Inc.
- Dave Peck. Manzanita Berry Farms
- Gary Tanimura and Glenn Noma, Tanimura and Antle Fresh Foods Inc.
- Jenny Broome, Natalia Neerdaels, Emily Paddock and Marty Madesko, Driscoll's.
- Mike Nelson, Patti Wallace and Luis Rodriguez, Plant Sciences Inc.
- Rod Koda, Shinta Kawahara Farm.
- Farm Fuel Inc. and Frontier Ag Company Inc.
- Kat Kammeijer, Laura Murphy, Patty Ayala at UCCE.
- Hilary Thomas, Alex Orozco and Dan Legard, CA Strawberry Commission.
- Margherita Zavatta and student workers, interns, and volunteers of the Shennan lab, UCSC.

Project Goals

- To test ability of ASD to consistently control V. dahliae and other pathogens and monitor effect on strawberry yields
- To assess the economic feasibility of ASD
- To determine the mechanisms of disease reduction by ASD
- To determine effect of ASD on N fertility and cycling with different C-sources
- To test ASD at commercial scales

ASD: some target Pests and Crops

- Soil-borne pathogens
 - Verticillium dahliae^{1,2,4}
 - Fusarium oxysporum^{1,2}
 - Fusarium redolens²
 - Ralstonia solanacearum²
 - Rhizoctonia solani¹
 - Sclerotium rolsfii³
- Nematode
 - Meloidogyne incognita¹
 - Pratylenchus fallax²
- Weed
 - Nutsedge³

- Crops tested
 - Welsh onion²
 - Tomatoes²
 - Strawberries^{2,4}
 - Eggplant^{2, 3}
 - Spinach²
 - Peppers³
 - Maple¹
 - Catalpa¹

¹ Dutch studies; ² Japanese studies; ³Florida studies; ⁴ California

ASD: Three Steps

- 1. Incorporate organic material
 - Provides C source for soil microbes
- 2. Cover with tarp
- 3. Irrigate to field capacity
 - Water-filled pore space
 - Create anaerobic (no oxygen) conditions and stimulate anaerobic decomposition of incorporated organic material

Spreading rice bran – broadcast with manure spreader

7

CATERPILLAR

Mar.

5

A CALL AND CARE AND

The All

Applying rice bran to beds only, then rototilling to incorporate

Findings to 2011

1. Good yields obtained with 9ton/ac rice bran

- 1. Salinas 2010 equal to MeBr (and UTC) yields
- 2. Watsonville 2010 within 15% of MeBr yields
- 3. Ventura 2011 75% increase yield over UTC
- 4. Castroville 2011- as good or better than Pic-Clor
- 5. Watsonville 2011 equal to Pic-Clor and steam
- Can get consistently good V. dahliae suppression 80 to 100% decrease in # microsclerotia in soil, using a range of C sources
- 3. Standard tarp as effective as TIF and VIF
- 4. Weed suppression limited in the central coast of CA

Findings to 2011 (contd):

 Need to accumulate 50,000 mVhr of Eh below 200mV to get suppression, and for soil temps to be above 65°F for at least first week of ASD treatment

Watsonville 2010/11, 2011/12

2011 Verticillium inoculum suppression post treatment

Pythium spp.

% roots from which fungi was isolated

Cylindrocarpon spp.

% roots from which Rhizoctonia was isolated

% roots from which Fusarium spp. were isolated

Monterey bay academy – Watsonville 2011 Partial Costs and Net Returns (\$ per Acre)

Net revenue above harvest cost

Net revenue above harvest and treatment costs

Monterey bay academy – Watsonville 2012 Partial Costs and Net Returns (\$ per Acre)

Net revenue above harvest cost

Net revenue above harvest and treatment costs

Santa Maria 2011/12

Santa Maria 2012 Partial Costs and Net Returns (\$ per Acre)

Net revenue above harvest cost

Net revenue above harvest and treatment costs

2012-2013 season

Commercial Implementation of ASD in CA

Crop	# of site	C-source * (# of site)	Acreage per site Ave. (Min. – Max.)	Acreage Total
Strawberry	16	RB 6-9 t/ac (14) ML 6 t/ac (2)	5.8 (1-20)	94
Raspberry	11	RB 6-9 t/ac (11)	2.2 (1-5)	24
Blueberry	1	RB 6-9 t/ac (1)	5.0 (5-5)	5
Total	28**	RB 6-9 t/ac (26) ML 6 t/ac (2)	4.4 (1-20)	123

* RB: rice bran, ML: molasses. ** 26 organic sites and 2 conventional sites. As of Sep. 26, 2012. Courtesy of K. Jacobsen, Farm Fuel, Inc.

2012-2013 demonstration trials – detailed monitoring

Location	C-source	Acre age	type
Watsonville	9t/ac Rice Bran or 4.5t/ac RB+4.5t/ac Molasses +/- preplant fertilizer	1 0.5	Organic Conventional
Salinas	9 t/ac Molasses	0.5	Conventional
Salinas	9 t/ac Molasses	1	Conventional
Santa Maria	9 t/ac Molasses	0.5	Conventional

2012-2013 replicated trials

Location	C-source/treatments	type
Watsonville	Rice bran 6, 9 t/ac Molasses 6, 9 t/ac RB 4.5 + Mol 4.5 t/ac UTC	Conventional
Watsonville	Rice bran 6, 9 t/ac Molasses 6, 9 t/ac RB 4.5 + Mol 4.5 t/ac Controls: UTC, Water only, Rice bran 9 t/ac – no water	Conventional
Watsonville	Rice Bran 9 t/ac Molasses 9 t/ac Steam Steam + Mustard Seed meal UTC	Conventional
Santa Cruz	RB 4.5 + Mol 4.5 t/ac +/- compost Mustard Seed meal UTC	Organic

Spence Field - Salinas Fall 2012

Soil pH and Nitrate Content Changes at ASD Plots (MBA, 2012-13)

Treatment effects on soil chemical characteristics MBA trial, Watsonville (0"-6" depth. 5/2/2012). Numbers with the same letter are not significantly different (*P*=0.05).

Treatment	рН	EC 1:2 dS/m	Olsen- P ₂ O ₅ ppm	Ex. Ca ppm	Ex. Mg ppm	Ex. K ppm	Ex. Na ppm
UTC	6.7	0.14	44.8 b	10500	3125 bc	1328 b	305
MM	6.6	0.16	46.5 b	9800	2925 с	1298 b	270
ASD	6.3	0.31	79.8 a	9800	3775 a	2362 a	270
Steam	6.6	0.18	44.0 b	10100	3138 bc	1995 b	310
MM+ASD	6.4	0.29	74.3 a	10275	3863 a	2420 a	295
Steam+MM	6.4	0.27	45.8 b	10725	3325 b	1463 b	323
Pic-Clor	6.7	0.14	43.3 b	10025	3175 bc	1188 b	308
P value	0.07	0.05	0.0001	0.77	0.0001	<0.0001	0.48

Fungal community composition determined by T-RFLP analysis Plant Sciences, Watsonville. Post-ASD, Nov. 2012

Fungal community composition determined by T-RFLP analysis MBA, Watsonville. Post-ASD, Nov. 2012

Conclusions

- When get sufficient anaerobic conditions yields equivalent or better than Pic-Clor
- Cost for ASD around \$1000/ac higher than Pic-Chlor with 9ton/ac rice bran
- Get good control with ASD of number of pathogens Verticillium, Rhizoctonia, and Pythium
- Some control of Fusarium with rice bran, but not if use mustard meal in ASD.
- Can get long term decrease in soil pH due to production of nitrate from the rice bran carbon source
- Use of rice bran also increases soil phosphate, potassium, and magnesium levels

Future work planned

- Continue to evaluate ASD for control of other pathogens including Macrophomina
- Test alternative C sources such as molasses, cover crops, alone and in combination with rice bran
- Do more large field demonstrations assess uniformity
- Continue economic analysis of various ASD options
- Further explore mechanism of action of ASD and suppressiveness of soil following ASD
- Document nitrogen dynamics for different ASD options
- Monitor N₂O, CH₄, and CO₂ emission during ASD and NO₃ leaching during the winter after ASD

QUESTIONS? joji@ucsc.edu cshennan@ucsc.edu