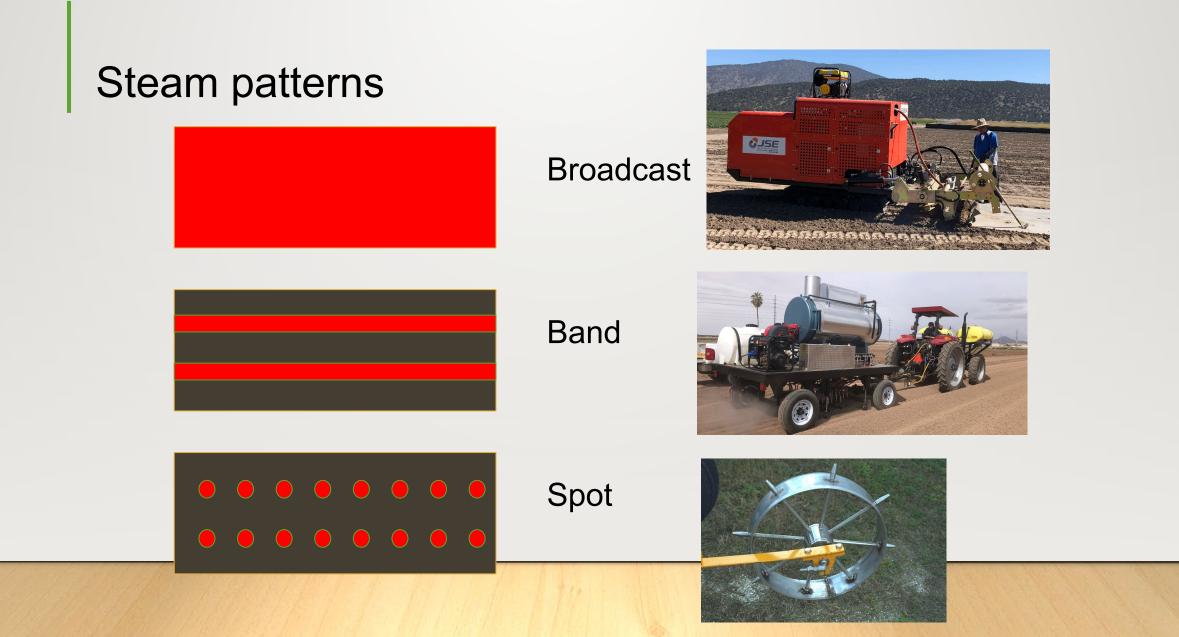
Soil Disinfestation with Steam

STEVE FENNIMORE, UNIVERSITY OF CALIFORNIA, DAVIS

AT SALINAS, CA


UCCE Ventura May 6, 2022

Definition of soil disinfestation

- Reduction of the pest community in the soil to a level that will permit profitable crop production.
- A "kill step" used to control soil pests

Methods of soil disinfestation

- Soil fumigants
- Heat
 - Solarization
 - Steam 158°F for 20 min
- ASD

How soil steaming works

- Inject steam into the soil to raise soil temperature to 158°F for 20 minutes
- 2. Steam transfers heat from heat source to target soil particles
- 3. When steam comes in contact with cold soil particles the steam molecules condense releasing heat to the soil particles
- 4. Steam kills the pathogens in an around the soil particle
- 5. Steam also kills weed seeds and nutsedge tubers

Why choose steam for soil disinfestation?

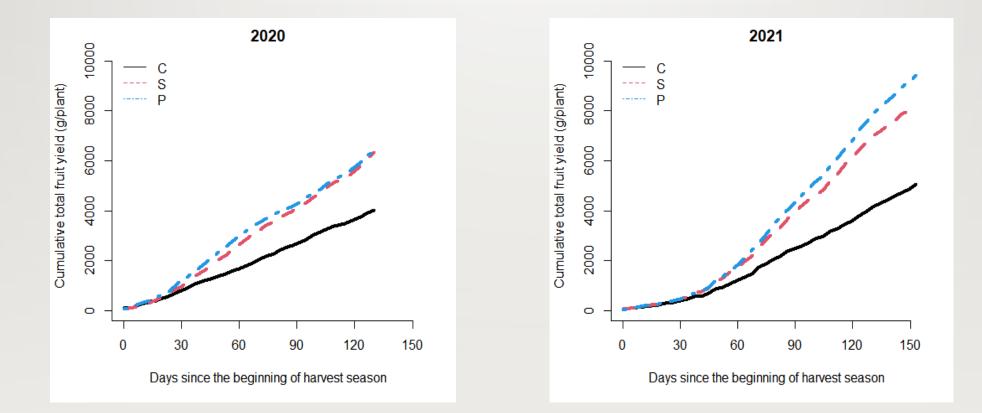
- 1. It kills soil pests
- 2. No one owns it
- 3. Not a pesticide is a device
- 4. Is a sanitation treatment organic compliant
- 5. Is flexible and safe
- 6. No buffer zones, township caps, or notifications
- 7. Unlike fumigants, no plastic mulch needed after treatment

Steamy from JSE – South Korea

Fruit field evaluation

Steam disinfestation in a fruiting field

- Treatments included steam, drip applied Pic Clor 60, and a control
- Treatments were replicated 4 times and arranged in a RCBD
- Data collected were soilborne pest control, weed control and fruit yield


Pathogen control- Salinas 2021

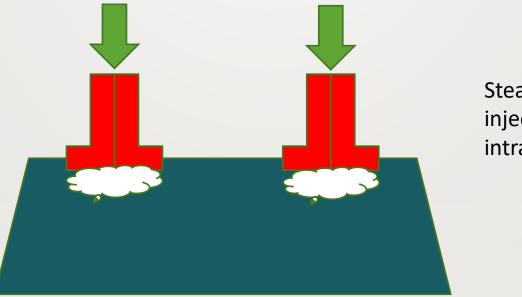
Treatment	Pythium ultimum	Verticillium dahliae
	% reduction	Microsclerotia /gram soil
No steam control	33	33 a
Steam	100	9 b
Chloropicrin	100	16 b

Weed seed/tuber viability- Salinas 2021

Treatment	Purslane	Yellow nutsedge
	% viable	
No steam control	85 a	36 a
Steam	0 b	0 b
Chloropicrin	0 b	0 b

Cabrillo fruit yields: steam, chloropicrin, control

Steam disinfestation in a fruiting field - summary


- Steam was as effective as Pic Clor 60 in controlling soil pathogens and weeds
- Fruit yield from steam treatments was no different than Pic Clor 60

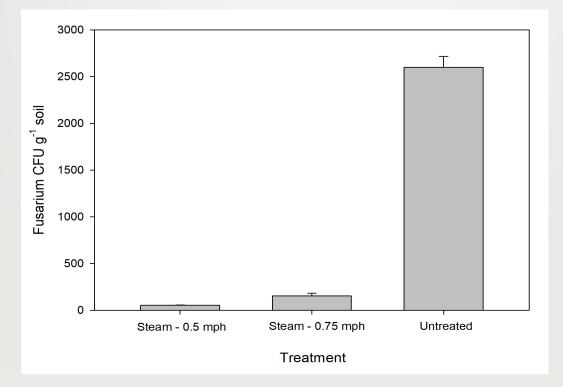
Soil Steam International – Norway. Coming to CA

Band steaming in vegetables

Seed lines disinfested with steam

Steam is injected into intra row soil

Seed crop into the steamed band


Weed emergence and lettuce drop inoculum is reduced in intra-row Weeds outside seedline can be cultivated out.

Band steam in lettuce at Yuma, AZ

Fusarium control with band steam – Univ. of Arizona, Yuma

M. Siemens et al. unpublished

Data collected

- Soil temperatures
- Weed control, weeding times
- Pathogen control: Pythium spp., Sclerotinia minor, Fusarium oxysporum lactucae
- Lettuce yield

Hand weeding times in lettuce and carrot trials

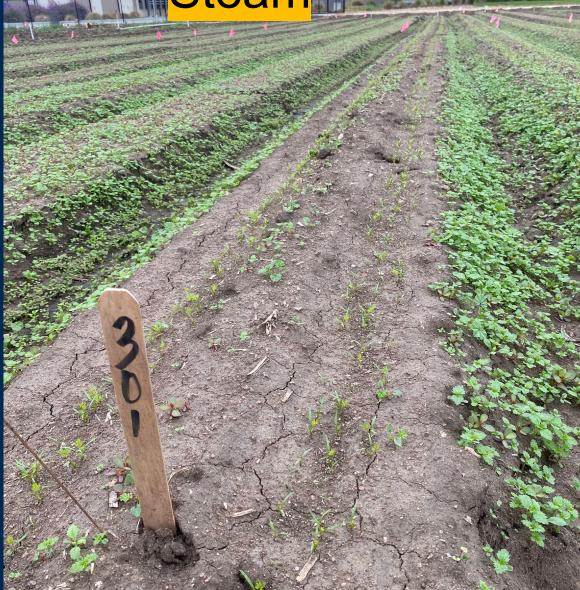
Treatment	Lettuce	Carrot
	Hours/acre	
Steam	10 b	25 b
No steam	117 a	130 a

Pythium colony reduction in lettuce and carrot trials

Treatment	Lettuce	Carrot
	Colony reduction %	
Steam	99 b	95 b
No steam	0 a	0 a

Lettuce and carrot yields and carrot diameters

Treatment	Lettuce	Carrot	Carrot
	Tons/Acre		Diameters (mm)
Steam	42.3 a	26.6	28.7 a
No steam	30.4 b	23.6	25.9 b


Lettuce drop, & INSV– Arizona steamer

Treatment	Lettuce drop	INSV
	Number	per 50ft
Steam	4.8 b	4.3 b
No steam	12.3 a	12.3 a

Nontreated control

ComponentCost \$Manufacture
price\$105,051Price to
operator\$136,500

Operating costs per acre

Component	Cost \$/A
	φ
Labor costs	\$394
Fuel (propane)	\$450
Total cost/A	\$971

Objectives 2022

- Combine steam with standard cultivation for 100% weed control and 0% handweeding
- Evaluate soil disinfestation with steam in lettuce and carrot for control of soilborne diseases and weeds. Scale up for Strawberries?

Yuma, AZ 3/4/22

Conclusions

- Weeds, Pythium colonies and lettuce drop were greatly reduced
- Steam increased lettuce size, but improved yield part of the time
- A good fit for band-steam technology may be organic production where there are few good disease and weed control options.
- Steam applicator engineering development is needed to make a more efficient steam applicator.

Acknowledgments

- Funding: California Leafy Green Research Board, Californian Fresh Carrot Advisory Board
- USDA NIFA Crop Protection & Pest Management Program & Methyl Bromide Alternatives Program
- Grower partners and weeding crews
- Mark Siemens, University of Arizona, Yuma
- Nelly Guerra, & John Rachuy