Bed and Flat Fumigation for Caneberries

Ventura County Caneberry Production Meeting April 11, 2014

Washingon

- Deep shank injected
- Telone C-35, C-17, PC 60, Metam
- Non-tarped.
- Planting life 5-10 years

California

- Applied noble plow
- MB:pic, Telone C-35, PC 60
- Tarped, sometimes TIF
- Planting life 1.5-5 years

Phase 2 fumigant labels

In effect now Label requirements are very complex!!!

- Fumigation management plans
- Responder/community outreach
- Applicator training
- No applications near sensitive areas
- Buffers and buffer credits
- Posting
- Emergency preparedness

22 Acre Raspberry field (yellow block) fumigated with Telone C-35, 39 gallons/A, no tarp

Broadcast fumigated, 625 ft buffer

Bed fumigated with VIF tarp,

25 ft buffer

Grower Trials of Bed Fumigation

Five trials established in raspberry fields:

- Lynden 1, non-replicated, substantial *P. rubi* and *P. penetrans*
- Lynden 2, replicated, low P. penetrans and P. rubi; Also trialing non-tarped bed
- Lynden 3, replicated, substantial *P. penetrans*
- Burlington, replicated, high P. penetrans and P. rubi; Also trialing middle row management
- Mount Vernon, replicated, high P. penetrans

Treatments applied Sept 2010, raspberries planted April 2011

Treatment and evaluation timeline

- Soil fumigated: Sept 2010 (Lynden and Burlington trials), 2011 (Mt Vernon trial)
- Raspberries planted April-May 2011
- Primocane growth measurements, December 2011
- Yield evaluations, July 2012
- Soil bioassay for *P. rubi*, October 2011 (and annually thereafter)
- P. penetrans extraction from soil and from roots, April and October of each year

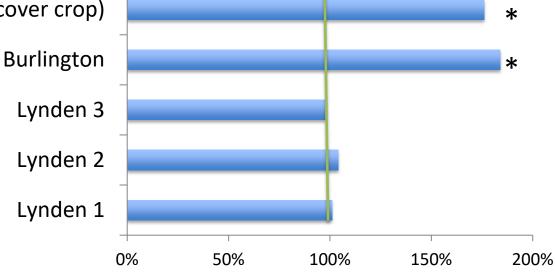
Cane Height (cm) 2011

	Burlingto	n	Lynden 1	Lynden 2	Lynden 3	Mount Vernon
Non-fumigated	130	С				46
Bed fumigated	166 a		140	201	258	54
Bed fumigated (custom applicator's						
apparatus)						60
Bed fumigated+cover crop	146	b				
Broadcast fumigated	137	bc	139	218	244	56
P-value	0.0012		n/a	0.1002	0.4	0.29

Plants in bed-fumigated plots generally grew as well as those in broadcast-fumigated plots.

2012 Harvested fruit weight, bed fumigated plots:

percent of fruit weight from broadcast-fumigated plots


Harvested fruit weight from bed fumigated plots as percent of fruit weight from broadcast-fumigated plots

Burlington (plus cover crop)

Burlington (non-fumigated control)

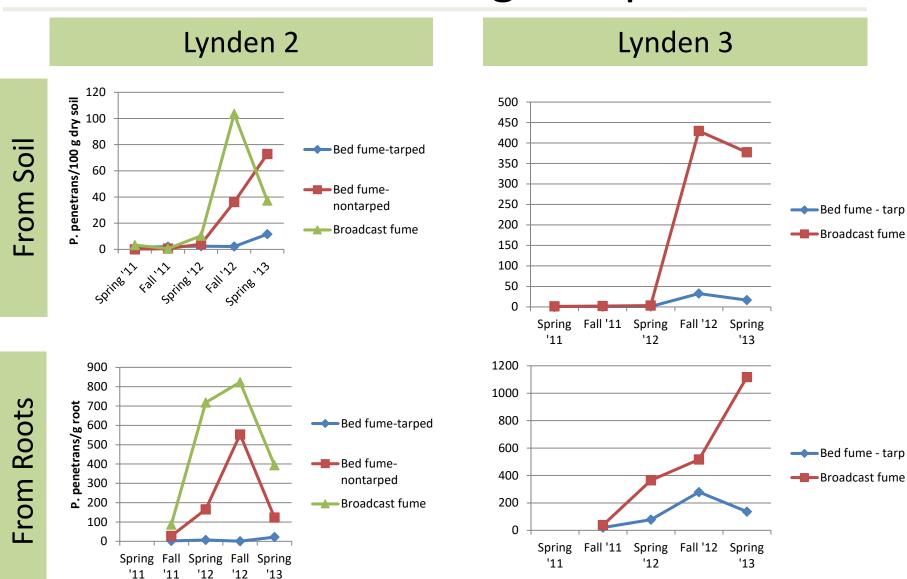
Bed-fumigated plots were as productive as broadcastfumigated plots, sometimes much more productive

P. rubi bioassay, 2011

Root rot control in bedfumigated plots has been as good as in broadcast treated plots so far

Root rot severity

Root for Severity	Burnington	Lynden 1	Lynden Z	Lynden 3
beds				
Non-fumigated	5.5			
Bed fumigated, tarp	5.8	6.0	4.0	2.3 a
Bed fumigated, tarp+cover crop	4.3			
Broadcast fumigated	4.8	7.0	3.8	5.3 b
P-value	0.68	n/a	0.70	0.05
alleyways				
Non-fumigated	6.3			
Bed fumigated, tarp	6.0	7.0	3.8	6.7 b
Bed fumigated, tarp+cover crop	6.0			
Broadcast fumigated	6.5	6.0	4.3	4.0 a
P-value	0.90	n/a	0.80	0.01

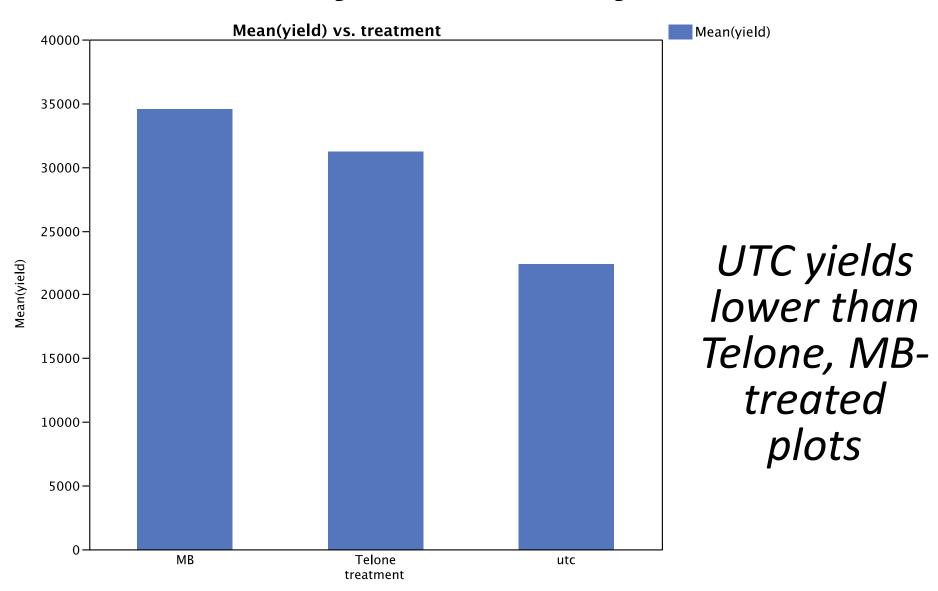

P. rubi bioassay, spring 2013

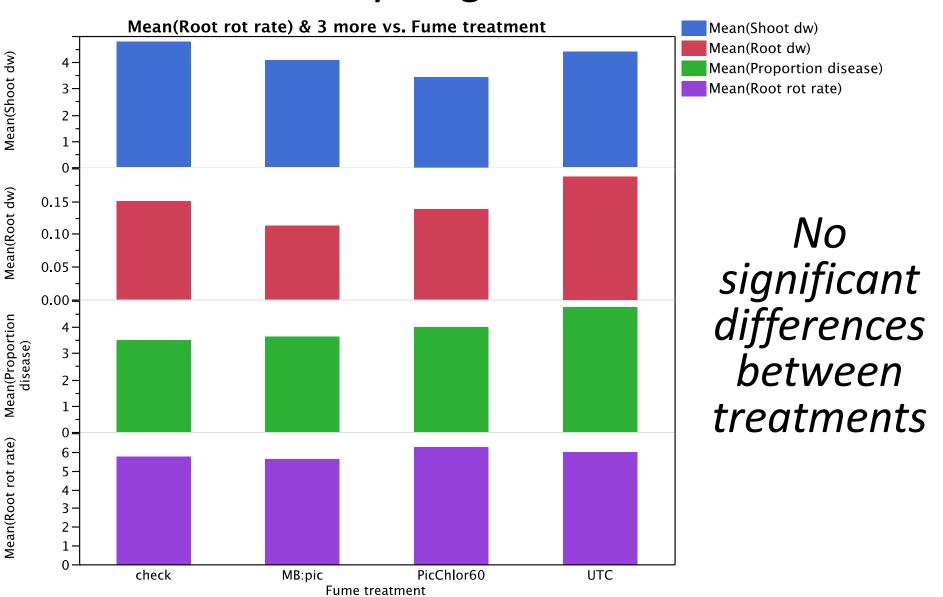
In some trials, less root rot in alleyways than in beds.
No treatment differences.

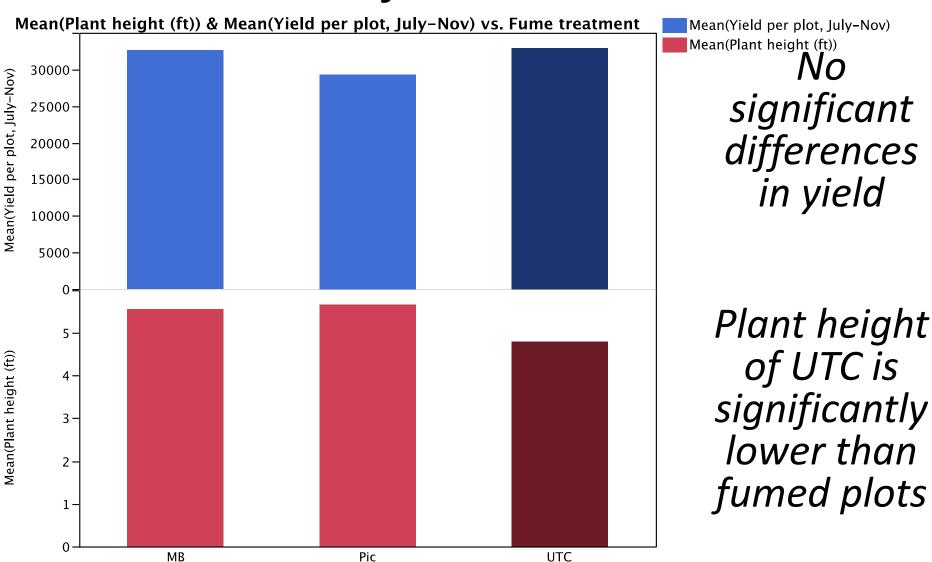
Root rot severity	Burlington	Lynden 1	Lynden 2	Lynden 3
Sampling location				
alleyways	5.6 a	5.8	4.1	2.7 a
beds	6.8 b	6.0	3.8	7.0 b
Fumigation treatment (all sampled	from beds)			
Non-fumigated	6.3			
Bed fumigated, tarp	7.3	7.0	4.0	6.3
Bed fumigated, tarp+cover crop	6.8			
Broadcast fumigated	7.0	5.0	4.0	7.7

Nematode recolonization in bed- and broadcast-fumigated plots

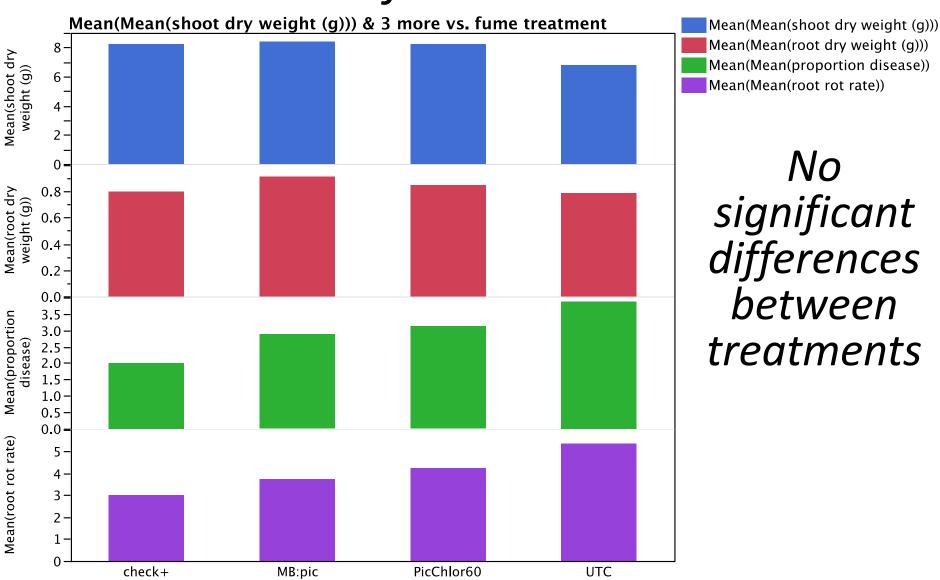
Challenges:


- The shaper we used (an adjustable unit for vegetables) can only make beds up to about 8" high.
 You'd need a different shaper to make larger beds.
- You'll need GPS or some other way to assure that beds are made in the correct location.
- It takes **more time** to fumigate a field this way; we usually travel at about 3 mph when fumigating and laying tarp. (Broadcast rig travels about 5-6 mph.)




Yield-California trial, fall 2011

Phytophthora bioassay-California trial, Spring 2012



Yield and Plant Height-California trial, fall 2013

Fume treatment

Phytophthora bioassay-California trial, fall 2013

fume treatment

Another option-metam (Vapam)

- Telone C-35, deep shank injected
- 35 gal/A
- 20 A field
- 20% credit for 2-3% organic material
- 460 ft buffer

- Vapam HL, applied with rotary spader
- 75 gal/A
- 20 A field
- 20% credit for 2-3% organic material
- 96 ft buffer
- ?Less volatile?

About 75% of the fumigant is injected in these sweeps near the front of the spader

Spader blades rotate slowly, mixing soil and Vapam

Sweep

Spader

blade

Power

roller

Remaining 25% of Vapam is injected ahead of this shallow power harrow

Seal generated by power roller

*Relax. They are just applying water in this demonstration.

Other options?

- Paladin (Dimethyl Disulfide)
 - Effective, strong smell
 - Must be applied under VIF or TIF tarp
 - 25 ft buffer for bed applications
- Mustard meals
 - Effective in greenhouse tests, less encouraging in field
 - Incorporate with rotary spader?
 - Mustard variety matters

Thanks!!

USDA-ARS:
Duncan Kroese
Amy Peetz
Mariella Ballato

WSU-Mt. Vernon:
Don Wallace
Paul Han
Jack Pinkerton

Industry cooperators:
Trident Ag Products
Curt Maberry Farms
Larry Tremaine
Darryl Ehlers
Nate Youngquist
Sakuma Bros. Farms

Funded by:

USDA-NIFA-RAMP
Washington State-USDA SCRI
Northwest Center for Small Fruit Research