Site specific nitrogen management in processing tomatoes

Daniel Geisseler
Nutrient Management Specialist, UC Davis

Northern San Joaquin Valley Processing Tomato Meeting, Modesto

January 24, 2018
Data collection in commercial fields in 2016

• Sites: - 2 sites near Woodland
 - 3 sites near Stockton
 - 1 site near Huron

• Data: - Canopy development
 (infrared camera)
 - ET estimates from Tule stations
 - N uptake
 (repeated plant sampling)
Expected N uptake

⇒ N in tomatoes: 2.99 lbs/ton
⇒ N in vines: 33% of total N

For a 55-ton total yield:
Expected N requirements

- Expected yield: 55 tons/acre
- Expected N uptake: 246 lbs/acre
 - 2.99 lbs/ton; 67% of total N in fruits
- N use efficiency: 90%
- Total N requirement: 274 lbs/acre (from all sources)
N sources at field site

- No nitrate in irrigation water
- Residual soil nitrate:
 - 1\(^{st}\) foot: 13 ppm ⇒ 45.4 lbs/acre
 - 2\(^{nd}\) foot: 7.7 ppm ⇒ 27 lbs/acre
- Assumption: 50% of nitrate in 1\(^{st}\) foot and 90% in 2\(^{nd}\) foot are available

⇒ Available soil nitrate: 47 lbs/acre
⇒ Fertilizer N needed (incl. starter): 225 lbs/acre
N budget for UC Davis trial

<table>
<thead>
<tr>
<th>N sinks and sources</th>
<th>lbs N/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>N uptake</td>
<td>246 lbs/acre</td>
</tr>
<tr>
<td>N efficiency</td>
<td>90%</td>
</tr>
<tr>
<td>N requirement</td>
<td>274</td>
</tr>
<tr>
<td>N in irrigation water</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Residual soil nitrate</td>
<td>47 lbs/acre</td>
</tr>
<tr>
<td>N credits</td>
<td>47</td>
</tr>
<tr>
<td>Fertilizer application rate</td>
<td>227</td>
</tr>
</tbody>
</table>
Residual soil nitrate

150 lbs/acre * 50% = 75 lbs/acre

50 lbs/acre * 90% = 45 lbs/acre

Total credit: 120 lbs/acre

Lazcano et al., 2015
N budget example I

<table>
<thead>
<tr>
<th>N sinks and sources</th>
<th>lbs N/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>N uptake</td>
<td>246 lbs/acre</td>
</tr>
<tr>
<td>N efficiency</td>
<td>90%</td>
</tr>
<tr>
<td>N requirement</td>
<td>274</td>
</tr>
<tr>
<td>N in irrigation water</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Residual soil nitrate</td>
<td>120 lbs/acre</td>
</tr>
<tr>
<td>N credits</td>
<td>120</td>
</tr>
<tr>
<td>Fertilizer application rate</td>
<td>154</td>
</tr>
</tbody>
</table>
1 acre-inch of water with a nitrate-N concentration of 1 ppm contains 0.227 lbs N/acre

Example:
• Irrigation water: 10 ppm nitrate-N
• Seasonal irrigation: 22 inches

⇒ N in irrigation water: 50 lbs/acre
N budget example II

<table>
<thead>
<tr>
<th>N sinks and sources</th>
<th>lbs N/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>N uptake</td>
<td>246 lbs/acre</td>
</tr>
<tr>
<td>N efficiency</td>
<td>90%</td>
</tr>
<tr>
<td>N requirement</td>
<td>274</td>
</tr>
<tr>
<td>N in irrigation water</td>
<td>50 lbs/acre</td>
</tr>
<tr>
<td>Residual soil nitrate</td>
<td>120 lbs/acre</td>
</tr>
<tr>
<td>N credits</td>
<td>170</td>
</tr>
<tr>
<td>Fertilizer application rate</td>
<td>104</td>
</tr>
</tbody>
</table>
Replicated trial at UC Davis

- 3 nitrogen treatments:
 - N_175: Optimal N minus 50 lbs N/acre
 - N_225: Optimal N
 - N_275: Optimal N plus 50 lbs N/acre

- Irrigation in all treatments was 100% ET
- 5 replicates
- Plot size: 3 beds x 200 feet
Trial management

• Transplanting date: 05/01/2017

• Fertilization:
 – Starter: 30 gal/acre of 8-24-6, Zn
 – 5 weekly fertigations of UAN between 06/01 and 06/29
 – Two applications of K-thiosulfate in July (total of 100 lbs K₂O/acre)

• Harvest date: 08/25/2017
Fertilization program

Residual soil nitrate not included
Marketable yield

- Average marketable yield: 58 tons/acre
- No statistically significant differences among treatments
Why are there no treatment effects?

- We may have overestimated N uptake
- We did not account for N mineralization during the growing season
Measured N uptake

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N in fruits (lbs/ton)</th>
<th>N in vines (lbs/acre)</th>
<th>% of total</th>
<th>Total N (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_175</td>
<td>2.59</td>
<td>148</td>
<td>39%</td>
<td>242</td>
</tr>
<tr>
<td>N_225</td>
<td>2.99</td>
<td>166</td>
<td>38%</td>
<td>269</td>
</tr>
<tr>
<td>N_275</td>
<td>3.07</td>
<td>187</td>
<td>42%</td>
<td>319</td>
</tr>
</tbody>
</table>
Soil N mineralization

Incubation: 10 weeks at 77 °F and optimal moisture content

Soil Properties:
- Yolo Silt Loam
- 1.8% soil organic matter
- pH$_w$ 7.6
Soil N mineralization

- Assumption: annual N mineralization 75-125 lbs/acre
- N mineralized during growing season: 30-50 lbs/acre
Conclusions

• At common N application rates, plants take up more N than needed (luxury consumption)
• Root access to nitrate above the drip line is a rough estimate
• Even in soils with a low soil organic matter content, N mineralization during the season contributes to N supply
Acknowledgement

- CDFA Fertilizer Research and Education Program (FREP)
- California Tomato Research Institute
- UC ANR California Institute for Water Resources
- Growers
- Gene Miyao, Brenna Aegerter, Tom Turini, Michael Cahn, Tim Hartz
- Israel Herrera and the Russell Ranch field team
- Kelley Liang, Irfan Ainuddin, Patricia Lazicki, Ken Miller