Oroville, September 14 2010

for California

Pyrolysis of Biomass

Gareth J Mayhead University of California Berkeley In partnership with: USDA Forest Service Region 5

http://ucanr.org/WoodyBiomass

Pyrolysis

- Pyrolysis is thermal decomposition occurring in the absence of oxygen
 - Heat for process may be external or internal (part of biomass load)
- It is the first step of combustion and gasification
- Family of related processes including:
 - Slow pyrolysis
 - Torrification
 - Torrefaction
 - Airless drying
 - Destructive distillation
 - Fast pyrolysis

Slow pyrolysis – batch carbonization

- Proven technology (1000+ years)
- Low temperature, long residence time (550-750°F, 30mins-days)
- Flexible feedstock specification
- Burns part of the load for the heat input
- Charcoal is main product
- Equipment available for large and small scale production
- AQ issues
- Works in the woods!

University of California
Agriculture and Natural Resources
Woody Biomass Utilization

Slow pyrolysis – continuous auger system

External heat source (electricity)

http://ucanr.org/WoodyBiomass

University of California
Agriculture and Natural Resources
Woody Biomass Utilization

Fast pyrolysis

- An emerging technology
- Moderate temperature, short residence time (930°F/~1s)
- Products are bio-oil, char (and gas)
- Tight feedstock specification (clean, ^{1/}₁₆-¹/₈",
 <10% moisture)
- Energy balance can be a problem (energy required for drying and process heat)

Fast pyrolysis – ROI mobile equipment demo, Oregon, Aug '09

Woody Biomass Utilization

http://ucanr.org/WoodyBiomass

Torrefaction or Torrification

- Mild pyrolysis
- 400-600°F
- Product is char ("bio-coal")
 - ~Loss of mass (cheaper transportation)
 - Higher energy density (10,500 BTU/lb vs 8,500 BTU/lb)
 - Hydrophobic (store outside)
 - Easier to grind than wood
 - Potential fuel for coal power plants
- Scale-up and financing is an issue

Pyrolysis outputs

- 1. Liquid (bio-oil C, H, O and other constituents)
- 2. Char
- 3. Gas

Vary depending upon process conditions (residence time and temperature)...

Mode	Conditions	Liquid	Char	Gas
Fast pyrolysis	moderate temperature, short residence time particularly vapour	75%	12%	13%
Carbonisation (slow pyrolysis)	low temperature, very long residence time	30%	35%	35%
Gasification	high temperature, long residence times	5%	10%	85%

Source: PyNe

Bio-oil

- Potential to substitute for conventional fuels in boilers, engines, turbines (note: may damage equipment, invalidate warranty)
- Heating value 40% of fuel oil/diesel (~17 MJ/kg at 25% wt. water)
- Does not mix with hydrocarbon fuels
- Acidic (pH 2.5)
- Not as stable as fossil fuels (storage issues)
- Needs further refining steps for most applications

http://ucanr.org/WoodyBiomass

University of California
Agriculture and Natural Resources
Woody Biomass Utilization

Char, Biochar, Charcoal, Torrefied wood

- Charcoal barbeques, restaurants
- Filtration (water and air) using activated carbon
- Soil improvement
- Growth media (substitute for vermiculite)
- Artists charcoal
- Fuel for coal (or other power plants)
- Prices vary with quality and end-use

Current status – fast pyrolysis

- Many demo projects (inc OR and CA)
- Few commercial installations (~2 in USA producing liquid smoke)
- 10+ vendor US/Canada companies (eg, Dynamotive, Ensyn, ABRI, ROI, RFT)
- Potential mobile in-woods units unproven
- Pricing unclear
 - \$250,000+ for 1ton/day unit
- Tampere, Finland integrated pilot facility (Metso/UPM/VTT) linked to BFB boiler

Key points

- Slow pyrolysis
 - Proven technology
 - Markets exist for product (charcoal)
- Mild pyrolysis (torrefaction)
 - Almost proven technology
 - Proven markets
 - Scale-up issues (finance, feedstock and market for product)
- Fast pyrolysis
 - Emerging technology
 - Limited markets
 - May use more energy in process than it produces
 - Cost basis unclear need high value products or zero cost feedstock
 - Use of bio-oil as a chemical feedstock or for liquid smoke makes sense
 - Larger scale integrated systems (eg with power plant) may work
- Carry out due diligence

Questions?

Key Questions to Ask

- Is the technology commercially deployed (proven)?
- What is the feedstock specification?
- What are the markets for the output products?
- Do the economics work?
- Is the process a net energy user?
- Permitting requirements?
- Do not rely on technology vendors for balanced information

