- Author: Kathy Keatley Garvey
Robert Washino, emeritus professor of entomology, emeritus chair of the UC Davis Department of Entomology, and emeritus associate dean of the UC Davis College of Agricultural and Environmental Sciences, praised him for his research and friendship.
"I first met Mir who was on the UC Riverside campus in the early 1960s for the first organizational meeting of the UC Systemwide Mosquito Research Program with biologists representing UC Berkeley, UC Davis, UCLA and UC Riverside," Washino recalled. "From that day forward, all of us in mosquito research competed for research funding and became either friends and/or competitors and sometimes both. I could have written a book on all that took place and it would have been a best seller if it were ever published but it was fun while it lasted!"
That was when the names of Barr, Work, Shaefer, Garcia, Reeves, Belkin, Bohart, Mulla and Washino--and more--populated the mosquito research news, or names "from the good ol days," said Washino, now 91.
"Mir was a great help to me getting started at UC Riverside, particularly in my mosquito days," said UC Davis distinguished professor Bruce Hammock, who holds a joint appointment with the Department of Entomology and Nematology and the UC Davis Comprehensive Cancer Center.
Major Dhillon, retired district manager of the Northwest Mosquito Abatement District, headquartered in Corona, Riverside County, and executive director emeritus of Society for Vector Ecology (SOVE), based in Ontario, Calif., was a 49-year friend and colleague.
"He was my major professor under whom I got my doctorate," Dhillon said. "I met him when he was 49 years old and I lost him after 49 years. He was a great mentor and TRULY an exemplary scientist of international fame.”
Dhillon said that Mulla donated $50,000 to SOVE last year at a memorial lecture. Mulla is credited with helping establish the UC Riverside's medical entomology department. He was named a fellow of the Entomological Society of America in 1995 and a Fellow of the American Association for the Advancement of Science in 1998. The World Health Organization honored him with its Distinguished Service Award in 2010, and SOVE singled him out for a Lifetime Achievement Award in 2009.
Mulla's Formula. Mulla was a close associate of William "Bill" Reisen, professor emeritus, Department of Pathology, Microbiology and Immunology, UC Davis School of Veterinary Medicine. Reisen wrote about Mulla's Formula to Estimate Control in a book, Vector Biology, Ecology and Control, pages 127-137, published in 2010:
"In California, the endemic mosquito borne encephalitides, including West Nile virus, are contained by special districts using integrated vector management programs. These agencies combine public education, source reduction and proactive larval control to suppress mosquito abundance to the point where tangential transmission of virus to humans is rare or unlikely. However, when these methods in concert fail to prevent enzootic amplification and the risk of human infection becomes eminent or is on-going, emergency adulticide applications of pyrethrin compounds are used to interrupt transmission. The efficacy of these applications has become controversial and some cities have opted to not apply adul-ticides. The current paper describes how a formula developed Dr. Mir Mulla some 40 years ago is still useful in solving contemporary problems of estimating percent control, a statistic useful in evaluating intervention efficacy. This simple but effective equation accounts for changes in both control and treated populations and thereby can be applied in dynamic situations where abundance is not stable. Examples are presented from ground and aerial experimental applications in Riverside County and from emergency interventions in Sacramento County in 2005 and Yolo County in 2006."
According to a 2008 UC Riverside newsletter, Mir served as a major professor for 27 doctoral students and three master's students; mentored more than 30 visiting scientists from overseas; and trained 20 postdoctoral scientists. "Dr. Mulla has made noteworthy contributions to, and has served in, numerous national and international organizations. These include the World Health Organization, with over 40 years of service in capacities such as science advisor, member of the Expert Advisory Panel, member or chair of steering committees or scientific working groups, as well as temporary advisor on numerous international projects. His publications (over 400) are well known around the world and are sought after by many scientists and specialists."
Native of Afghanistan. Born in Zangawat, Afghanistan to a family of 12 brothers and 4 sisters, Mir received a scholarship in 1948 to Cornell University where he obtained his undergraduate degree in entomology and parasitology in 3.5 years. He received his doctorate at UC Berkeley. In 1956, joined the UC Riverside faculty to help establish a medical entomology department, and launched his research on the control of eye gnats and mosquitoes.
From the Riverside Press-Enterprise obituary: "In his 50-year career as a medical entomologist, Dr. Mulla pioneered insect control methods throughout Southern California and the world. Mir's techniques for eye gnat and mosquito control improved people's health worldwide. He was a prolific scientist who authored more than 500 scientific publications. He loved field work and was a demanding editor, guiding over 30 graduate students. Mir led World Health Organization efforts to help developing countries control vector-borne diseases, including malaria. He traveled to many countries in this endeavor."
His wife of 64 years, Leila "Lee" Patterson Mulla, died Aug. 9, 2019 at age 88. They met at the International House at UC Berkeley during his graduate studies and married in August 1954. They raised four children, David, Shireen, Dean and Janet.
"Mir served as a leader in the Riverside Muslim community," according to the obituary. "He and Lelia founded the Islamic Society of Riverside and Orange Counties and played a key role in building the Islamic Center of Riverside, the first mosque in the Inland Empire. His philanthropic work included supporting the local Muslim community, donating land to Riverside County Parks to preserve public access to Sugarloaf Mountain for generations and establishing scholarships with the University of California Riverside in the College of Agriculture and Natural Sciences."
A Muslim funeral prayer (Janazah) will be held Friday, Feb. 3 after the 1 p.m. Jum'a prayer at Islamic Center of Riverside, 1038 W Linden St., Riverside. A public memorial service will be held Saturday, Feb. 4 at 11 a.m. at the Norco Family Funeral Home, 2645 Hammer Ave, Norco, followed by burial at 1:20 p.m. Saturday at Pierce Brothers Crestlawn Mortuary, 11500 Arlington Ave, Riverside.
Donations in his memory can be made to the Dr. Mir S. Mulla and Lelia L. Mulla Endowed Scholarship Fund, UC Riverside Foundation (access https://myadv.ucr.edu/ and search for "Mulla") or the Islamic Center of Riverside, https://www.islamiccenterofriverside.net/donate).

- Author: Kathy Keatley Garvey
Ponisio, who grew up in Fresno and holds degrees from Stanford University and UC Berkeley, is an assistant professor of biology at the University of Oregon who seeks to preserve and restore populations of bees and other pollinators.
Her seminar, both in-person and virtual, is sponsored by the UC Davis Department of Entomology andNematology at 4:10 p.m., Wednesday, Feb. 8 in 122 Briggs Hall. Host is community ecologist Rachel Vannette, associate professor, UC Davis Department of Entomology and Nematology. The Zoom link:
https://ucdavis.zoom.us/j/95882849672.
"Infectious disease prevalence is among the top five drivers of global extinction, including in wild bees," Ponisio says in her abstract. "With the global decline of wild bees, our work aims to contribute to understanding how community characteristics shape infectious disease prevalence in plant-pollinator communities. Infectious parasites can influence host immunity, physiology, and reproduction. The sharing of floral resources is a common mode of disease transmission among pollinators."
"Increasing host aggregation on floral resources can increase disease prevalence, that is, amplification," Ponisio noted. "Conversely, high host species diversity---even if accompanied by host aggregation---may dilute infection. Because bees pick up parasites from flowers, but not all flowers transmit parasites equally, flower abundance and diversity may further contribute to parasite dilution. In three systems, mass-blooming sunflower in Yolo County, CA, harvested forests in Coast Range, OR, and high elevation meadows across the Southwestern U.S., I examine how the factors that shape plant-pollinator abundance and diversity and the ramifications for parasite prevalence in wild bee communities. Across all systems, more than 40% of bees have at one parasite. Both natural (phenology) and human-induced (years post-harvest, mass-blooming crops) modification of the bee and floral communities indirectly affected parasitism by altering host community characteristics. I found a consistent amplification effect of host (bee) abundance and detected dilution through either host diversity or floral diversity in each system."
On her website, Ponisio elaborates: "We focus on understanding the mechanisms by which species interactions maintain species diversity, and how we can harness these processes to manage and restore diversity in human-modified systems. We focus on pollinators because they are critical for pollination in managed and natural plant communities, but our research is broadly applicable across ecological interactions. Our aim to discover new insights into how communities form, evolve, and persist through time and space, aiding in the prediction and prevention of community collapse. We combine modeling, synthesis and field-based work, and adhere to the principles of reproducible, open science."
Lauren holds two degrees from Stanford: a bachelor's degree in biology, with honors, in ecology and evolution (2010) and her master's degree in biology (2011). She received her doctorate from the Department of Environmental Science Policy and Management, UC Berkeley, in 2016.
Ponisio conducted postdoctoral research at UC Berkeley and served on the faculty at UC Riverside before accepting her current position. She received graduate fellowships from the National Science Foundation and the National Institute for Food and Agriculture, as well as a postdoctoral fellowship from the Berkeley Institute for Data Science. She was named among the Global Food Initiative's “30 Under 30” in Food Systems in 2016.
Food Gone. Ponisio says one of her most difficult field work experiences occurred in Yosemite National Park, according to her People Behind the Science podcast. "Their study on the effects of fires on pollinators required them to backpack out to remote sites where there had been natural fires. Lauren started working months ahead of time to get ready for the trip and prepare dehydrated meals for the lab to eat. One day, they opened the large canister where they had been storing their food to protect it from bears, and they discovered the food was gone. All that was left was a handwritten note from someone thanking them for leaving out food."
"The next day, the lab's field assistant tripped over a log and sprained her ankle. Then they accidentally left their sampling gear at a site and had to hike all the way back to retrieve it. Later, a bear came into their campsite and destroyed many of the traps they needed to collect pollinators for their study. At this point, Lauren and her colleagues were exhausted, surviving on snacks, their field assistant could barely walk, and much of the equipment they needed had been destroyed. In the face of all of these challenges, Lauren stayed calm. These kinds of things happen in field research, and everyone made it back to share the story."
Ponisio was featured on National Public Radio's "All Things Considered" in January of 2021 when she discussed "Wildfires Open Forests for Wildlife and Research."
Ponisio is the lead author of a recently submitted journal paper, "Mass-Flowering Crops Attract Bees, Amplifying Parasitism," co-authored by G. P. Smith, H. Sardinas, J. Zorn, Q. S. McFrederick and S. H.Woodard. (See CV)
The UC Davis Department of Entomology and Nematology's winter seminars are held on Wednesdays at 4:10 p.m. in 122 Briggs Hall. All are virtual. They are coordinated by urban landscape entomologist Emily Meineke, assistant professor. (See schedule.) She may be reached at ekmeineke@ucdavis.edu for technical issues.

- Author: Kathy Keatley Garvey
Her seminar also will be virtual. The Zoom link:
https://ucdavis.zoom.us/j/95882849672. Host is community ecologist Rachel Vannette, associate professor, UC Davis Department of Entomology and Nematology.
"Infectious disease prevalence is among the top five drivers of global extinction, including in wild bees," the bee biologist says in her abstract. "With the global decline of wild bees, our work aims to contribute to understanding how community characteristics shape infectious disease prevalence in plant-pollinator communities. Infectious parasites can influence host immunity, physiology, and reproduction. The sharing of floral resources is a common mode of disease transmission among pollinators."
"Increasing host aggregation on floral resources can increase disease prevalence, that is, amplification," Ponisio noted. "Conversely, high host species diversity---even if accompanied by host aggregation---may dilute infection. Because bees pick up parasites from flowers, but not all flowers transmit parasites equally, flower abundance and diversity may further contribute to parasite dilution. In three systems, mass-blooming sunflower in Yolo County, CA, harvested forests in Coast Range, OR, and high elevation meadows across the Southwestern U.S., I examine how the factors that shape plant-pollinator abundance and diversity and the ramifications for parasite prevalence in wild bee communities. Across all systems, more than 40% of bees have at one parasite. Both natural (phenology) and human-induced (years post-harvest, mass-blooming crops) modification of the bee and floral communities indirectly affected parasitism by altering host community characteristics. I found a consistent amplification effect of host (bee) abundance and detected dilution through either host diversity or floral diversity in each system."
On her website, Ponisio elaborates: "We focus on understanding the mechanisms by which species interactions maintain species diversity, and how we can harness these processes to manage and restore diversity in human-modified systems. We focus on pollinators because they are critical for pollination in managed and natural plant communities, but our research is broadly applicable across ecological interactions. Our aim to discover new insights into how communities form, evolve, and persist through time and space, aiding in the prediction and prevention of community collapse. We combine modeling, synthesis and field-based work, and adhere to the principles of reproducible, open science."
Lauren, who grew up in Fresno, holds a bachelor's degree in biology, with honors, in ecology and evolution (2010) from Stanford University, and her master's degree in biology (2011) from Stanford. She received her doctorate from the Department of Environmental Science Policy and Management, UC Berkeley, in 2016.
She conducted postdoctoral research at UC Berkeley and served on the faculty at UC Riverside before accepting her current position. She received graduate fellowships from the National Science Foundation and the National Institute for Food and Agriculture, as well as a postdoctoral fellowship from the Berkeley Institute for Data Science. She was named among the Global Food Initiative's “30 Under 30” in Food Systems in 2016.
Ponisio says one of her most difficult field work experiences occurred in Yosemite National Park, according to her People Behind the Science podcast. "Their study on the effects of fires on pollinators required them to backpack out to remote sites where there had been natural fires. Lauren started working months ahead of time to get ready for the trip and prepare dehydrated meals for the lab to eat. One day, they opened the large canister where they had been storing their food to protect it from bears, and they discovered the food was gone. All that was left was a handwritten note from someone thanking them for leaving out food."
"The next day, the lab's field assistant tripped over a log and sprained her ankle. Then they accidentally left their sampling gear at a site and had to hike all the way back to retrieve it. Later, a bear came into their campsite and destroyed many of the traps they needed to collect pollinators for their study. At this point, Lauren and her colleagues were exhausted, surviving on snacks, their field assistant could barely walk, and much of the equipment they needed had been destroyed. In the face of all of these challenges, Lauren stayed calm. These kinds of things happen in field research, and everyone made it back to share the story."
Ponisio was featured on National Public Radio's "All Things Considered" in January of 2021 when she discussed "Wildfires Open Forests for Wildlife and Research."
Ponisio is the lead author of a recently submitted journal paper, "Mass-Flowering Crops Attract Bees, Amplifying Parasitism," co-authored by G. P. Smith, H. Sardinas, J. Zorn, Q. S. McFrederick and S. H.Woodard. (See CV)
The UC Davis Department of Entomology and Nematology's winter seminars are held on Wednesdays at 4:10 p.m. in 122 Briggs Hall. All are virtual. They are coordinated by urban landscape entomologist Emily Meineke, assistant professor. (See schedule.) She may be reached at ekmeineke@ucdavis.edu for technical issues.

- Author: Kathy Keatley Garvey
Her dissertation proposal also will be virtual. The Zoom link:
https://ucdavis.zoom.us/j/99327991233.
“In the proposed research, I will study the effectiveness of both automated precision spray applications and drone-mediated releases of biological control agents for the suppression of lettuce aphid and western flower thrips in several contexts," she says in her abstract. "I hope that the results of the proposed research will contribute to the development of best-use practices to guide the use of both technologies."
"I will generate novel data that fill existing knowledge gaps regarding the use of precision insecticide applications and drone releases of natural enemies in lettuce production systems. This will advance the adoption of these new pest management tools and contribute to a more sustainable integrative pest management system for lettuce."
Addie received her bachelor's degree in molecular environmental biology from UC Berkeley in 2011 and her master's degree in horticulture and agronomy from UC Davis in 2018. Before enrolling at UC Davis, she worked as a researcher under research chemist Spencer Walse at the USDA Agricultural Research Service (ARS) laboratory in Parlier, CA (2019-2021) and the UC Davis Contained Research Facility in Davis, CA (2012-2019), studying postharvest integrated pest management (IPM) of quarantine pests.
Active in the Entomological Society of America (ESA), Abrams received a second-place or runner-up award for her student research presentation at the 2022 ESA meeting, a joint meeting of the Entomological Societies of America, Canada, and British Columbia held in Vancouver, B.C., Nov. 13-16.
In her abstract, she noted that "Commercial lettuce production in California's central coast represents 70 percent of the production in the United States. Recent discoveries of some chemistries in ground and surface water in the Salinas valley region have placed the insecticidal chemistries used by the industry at risk of increased regulation. Automated thinner-sprayers use plant-detection sensors to apply chemical sprays directly to individual lettuce plants, so that the same amount of product to plants as a standard broadcast sprayer while potentially reducing the amount of pesticide applied per acre by up to 90 percent. Field experiments testing this technology for the control of western flower thrips (Frankliniella occidentalis) and aphids, lettuce-currant aphid (Nasovonia ribisnigri) and others, were conducted to compare the efficacy of automated sprays to a conventional broadcast application system. Experiments were conducted in conventionally managed organic romaine lettuce fields using a complete randomized block design. Prior to and at regular intervals after treatment, heads were sampled from experimental and control plots to assess pest pressure. Results from this experiment validate the use of the automated sprayers to apply insecticides for the control of aphid and thrips pests in lettuce and will be discussed in the context of developing best-use-practices for this technology."
At the 2019 Pacific Branch of ESA meeting, Abrams delivered a presentation on Rearing methods for brown marmorated stink bug, Halyomorpha halys, on live host plants. She has authored or co-authored several publications on stink bugs.
- Author: Kathy Keatley Garvey
Her dissertation proposal begins at 10:30 in 122 Briggs Hall and also will be virtual. The Zoom link: https://ucdavis.zoom.us/j/
“In the proposed research, I will study the effectiveness of both automated precision spray applications and drone-mediated releases of biological control agents for the suppression of lettuce aphid and western flower thrips in several contexts," she says in her abstract. "I hope that the results of the proposed research will contribute to the development of best-use practices to guide the use of both technologies."
"I will generate novel data that fill existing knowledge gaps regarding the use of precision insecticide applications and drone releases of natural enemies in lettuce production systems. This will advance the adoption of these new pest management tools and contribute to a more sustainable integrative pest management system for lettuce."
Addie received her bachelor's degree in molecular environmental biology from UC Berkeley in 2011 and her master's degree in horticulture and agronomy from UC Davis in 2018. Before enrolling at UC Davis, she worked as a researcher under research chemist Spencer Walse at the USDA Agricultural Research Service (ARS) laboratory in Parlier, CA (2019-2021) and the UC Davis Contained Research Facility in Davis, CA (2012-2019), studying postharvest integrated pest management (IPM) of quarantine pests.
In her abstract, she noted that "Commercial lettuce production in California's central coast represents 70 percent of the production in the United States. Recent discoveries of some chemistries in ground and surface water in the Salinas valley region have placed the insecticidal chemistries used by the industry at risk of increased regulation. Automated thinner-sprayers use plant-detection sensors to apply chemical sprays directly to individual lettuce plants, so that the same amount of product to plants as a standard broadcast sprayer while potentially reducing the amount of pesticide applied per acre by up to 90 percent. Field experiments testing this technology for the control of western flower thrips (Frankliniella occidentalis) and aphids, lettuce-currant aphid (Nasovonia ribisnigri) and others, were conducted to compare the efficacy of automated sprays to a conventional broadcast application system. Experiments were conducted in conventionally managed organic romaine lettuce fields using a complete randomized block design. Prior to and at regular intervals after treatment, heads were sampled from experimental and control plots to assess pest pressure. Results from this experiment validate the use of the automated sprayers to apply insecticides for the control of aphid and thrips pests in lettuce and will be discussed in the context of developing best-use-practices for this technology."
Abrams delivered a presentation on Rearing methods for brown marmorated stink bug, Halyomorpha halys, on live host plants at the 2019 Pacific Branch of ESA, and has authored or co-authored several publications on stink bugs, including
- Ethyl formate dilution in carbon dioxide for fumigation control of the brown marmorated stink bug Halyomorpha halys, Stål (Hemiptera: Pentatomidae), Pest Management Science, 2022
- Greenhouse rearing methods for brown marmorated stink bug (Hemiptera: Pentatomidae) on live cowpea plants, Journal of Economic Entomology, 2021 (lead author)
-
Sulfuryl fluoride fumigation to control brown marmorated stink bug (Hempitera: Pentatomidae),Postharvest Biology and Technology, 2020 (lead author)
