- Author: John Stumbos
- Contributor: Aubrey White
The 72-acre “Century Experiment” at Russell Ranch is exploring the long-term impacts of crop rotation, farming systems, and inputs of water, nitrogen, carbon, and other elements on agricultural sustainability. Researchers document trends affecting crop yields, soil quality, profitability, environmental impacts, and efficiency in use of limited resources.
“We look at both organic and conventional systems,” says Russell Ranch director Kate Scow, a professor in the Department of Land, Air and Water Resources at UC Davis. “We're continuing to learn how to better manage both systems in the long term, but it's also important to identify new farming systems that incorporate the best parts of both.”
The theme for the May 28 event is “Soil Matters: Underground at the Century Experiment.” Presentations will be made by faculty, farmers, graduate students, postdoctoral researchers, and visiting scholars. Topic areas include:
- Nitrate leaching, drought and irrigation management in agriculture
- Soil biology — microbial communities and impact on farming systems
- Biochar — carbon sequestration and nutrient impacts
- Soil nutrient budgets and management
The program gets underway at 8:00 a.m. with welcoming remarks, followed by a tour of research sites from the comfort of hay-bale wagons. Presentations move indoors to the barn at 10:30 a.m. A growers' panel discussion follows lunch. The program wraps up at 1:30 p.m.
Registration is $10 ($5 for students, free for farmers) and can be made online through May 26. Russell Ranch is located approximately six miles west of the main UC Davis campus.
Russell Ranch, part of the Agricultural Sustainability Institute in the College of Agricultural and Environmental Sciences, is a unique 1,500-acre facility with more than 300-acres dedicated to the study of dry-land agriculture in a Mediterranean climate. The crops grown there — tomatoes, corn and wheat — are the same crops grown in the region. Researchers have monitored changes in crop and soil properties, greenhouse gas emissions, weed ecology, and economic indicators there since 1993.
Among research highlights, scientists have shown that cover-cropped systems can be managed to store water in the soil, tomatoes grown with subsurface drip irrigation use less water and less nitrous oxide emissions, and the concentration of antioxidant compounds are higher in organic than conventional tomatoes.
“We may need to make some hard choices about water and nutrient inputs that could change the face of what we currently know as California agriculture,” Scow says. “So we need resilient systems that can endure and be productive in a changing and unpredictable climate.”
For additional information about the field day, contact Emma Torbert at eetorbert@ucdavis.edu or (530) 752-5208.