- Author: Kathy Keatley Garvey
Her seminar also will be virtual. The Zoom link:
https://ucdavis.zoom.us/j/95882849672. Host is community ecologist Rachel Vannette, associate professor, UC Davis Department of Entomology and Nematology.
"Infectious disease prevalence is among the top five drivers of global extinction, including in wild bees," the bee biologist says in her abstract. "With the global decline of wild bees, our work aims to contribute to understanding how community characteristics shape infectious disease prevalence in plant-pollinator communities. Infectious parasites can influence host immunity, physiology, and reproduction. The sharing of floral resources is a common mode of disease transmission among pollinators."
"Increasing host aggregation on floral resources can increase disease prevalence, that is, amplification," Ponisio noted. "Conversely, high host species diversity---even if accompanied by host aggregation---may dilute infection. Because bees pick up parasites from flowers, but not all flowers transmit parasites equally, flower abundance and diversity may further contribute to parasite dilution. In three systems, mass-blooming sunflower in Yolo County, CA, harvested forests in Coast Range, OR, and high elevation meadows across the Southwestern U.S., I examine how the factors that shape plant-pollinator abundance and diversity and the ramifications for parasite prevalence in wild bee communities. Across all systems, more than 40% of bees have at one parasite. Both natural (phenology) and human-induced (years post-harvest, mass-blooming crops) modification of the bee and floral communities indirectly affected parasitism by altering host community characteristics. I found a consistent amplification effect of host (bee) abundance and detected dilution through either host diversity or floral diversity in each system."
On her website, Ponisio elaborates: "We focus on understanding the mechanisms by which species interactions maintain species diversity, and how we can harness these processes to manage and restore diversity in human-modified systems. We focus on pollinators because they are critical for pollination in managed and natural plant communities, but our research is broadly applicable across ecological interactions. Our aim to discover new insights into how communities form, evolve, and persist through time and space, aiding in the prediction and prevention of community collapse. We combine modeling, synthesis and field-based work, and adhere to the principles of reproducible, open science."
Lauren, who grew up in Fresno, holds a bachelor's degree in biology, with honors, in ecology and evolution (2010) from Stanford University, and her master's degree in biology (2011) from Stanford. She received her doctorate from the Department of Environmental Science Policy and Management, UC Berkeley, in 2016.
She conducted postdoctoral research at UC Berkeley and served on the faculty at UC Riverside before accepting her current position. She received graduate fellowships from the National Science Foundation and the National Institute for Food and Agriculture, as well as a postdoctoral fellowship from the Berkeley Institute for Data Science. She was named among the Global Food Initiative's “30 Under 30” in Food Systems in 2016.
Ponisio says one of her most difficult field work experiences occurred in Yosemite National Park, according to her People Behind the Science podcast. "Their study on the effects of fires on pollinators required them to backpack out to remote sites where there had been natural fires. Lauren started working months ahead of time to get ready for the trip and prepare dehydrated meals for the lab to eat. One day, they opened the large canister where they had been storing their food to protect it from bears, and they discovered the food was gone. All that was left was a handwritten note from someone thanking them for leaving out food."
"The next day, the lab's field assistant tripped over a log and sprained her ankle. Then they accidentally left their sampling gear at a site and had to hike all the way back to retrieve it. Later, a bear came into their campsite and destroyed many of the traps they needed to collect pollinators for their study. At this point, Lauren and her colleagues were exhausted, surviving on snacks, their field assistant could barely walk, and much of the equipment they needed had been destroyed. In the face of all of these challenges, Lauren stayed calm. These kinds of things happen in field research, and everyone made it back to share the story."
Ponisio was featured on National Public Radio's "All Things Considered" in January of 2021 when she discussed "Wildfires Open Forests for Wildlife and Research."
Ponisio is the lead author of a recently submitted journal paper, "Mass-Flowering Crops Attract Bees, Amplifying Parasitism," co-authored by G. P. Smith, H. Sardinas, J. Zorn, Q. S. McFrederick and S. H.Woodard. (See CV)
The UC Davis Department of Entomology and Nematology's winter seminars are held on Wednesdays at 4:10 p.m. in 122 Briggs Hall. All are virtual. They are coordinated by urban landscape entomologist Emily Meineke, assistant professor. (See schedule.) She may be reached at ekmeineke@ucdavis.edu for technical issues.