- Author: Pam Kan-Rice
A new study on the costs and returns of establishing and producing lemons in Ventura County has been released by UC Cooperative Extension in Southern California and UC Agricultural Issues Center, both part of UC Agriculture and Natural Resources.
“Coastal agriculture is always in transition and as strawberries and vegetables become less profitable due to markets and labor availability, lemons have returned as a potentially profitable alternative to those crops,” saidBen Faber, UC Cooperative Extension farm advisor for Ventura County and coauthor of the study.
California lemon acreage was at roughly 47,000 acres in 2018-19, of which Ventura County accounts for 31%, according to the 2019 Ventura County Crop Report. Ventura County was growing lemons on 14,407 acres in 2019.
“The profitability of lemon production depends on the price of land,” said Etaferahu Takele, UC Cooperative Extension farm management advisor for Southern California, another coauthor of the study. “If the price of land continues in its current trend, it could be prohibitive for new entrants to make a profit and limit further expansion of lemon production in the county.”
Their cost analysis describes production operations for Eureka lemons on macrophylla rootstock, which are planted at 155 trees per acre with an expected life span of 40 years.
The study includes a detailed summary of costs and returns and a profitability analysis of gross margin, economic profit and a break-even ranging analysis table, which shows profits over a range of prices and yields.
Input and reviews were provided by Ventura County farm advisor and grower cooperators. The authors describe the assumptions used to identify current costs for lemon establishment and production, material inputs, cash and non-cash overhead.
The new study, “2020 - Sample Costs to Establish and Produce Eureka Lemons in Ventura County,” can be downloaded for free from the UC Davis Department of Agricultural and Resource Economics website at http://coststudies.ucdavis.edu and the UCCE Riverside County Farm Management website at https://ucanr.edu/sites/Farm_Management/files/338947.pdf. Sample cost of production studies for many other commodities are also available on the websites.
For additional information or an explanation of the calculations used in the studies, refer to the section of the report titled “Assumptions” or contact Takele at (951) 683-6491 Ext. 243 ettakele@ucanr.edu or Donald Stewart at the UC Agricultural Issues Center at (530) 752-4651, destewart@ucdavis.edu.
For information about production of lemons in Ventura County, contact Faber at bafaber@ucanr.edu.
Lemon Orchard - Edward Okun

- Author: Ben Faber
In many ways our pest and disease management of fruit tree crops are exacerbated by our cultural practices. Avocado and citrus offer some very clear demonstrations of how we manage our trees can lead to reduced pesticide use. From the beginning, our selection of rootstock and scion can help lessen pest and disease problems. In both avocado and citrus we have good rootstocks which can handle problems, such as root rot more effectively than seedling rootstocks. So it is imperative that if you know that drainage will be a problem, starting off with the right, healthy rootstock helps. Also scion selection can have a major impact, as well. For example, ‘Lamb' avocado is much less prone to persea mite than is ‘Hass'. This pest can significantly impact a spray program and planting ‘Lamb' could mean virtually no sprays for this pest. Selling the ‘Lamb' fruit is then the challenge There are similar examples in citrus where one variety is more prone to a pest or disease than another.
Irrigation is probably the most important cultural factor in managing tree disease. Over, under and improperly timed irrigations are the conditions necessary for many root diseases. The Phytophthora spp. fungi are looking for distressed root systems brought on by waterlogging and other stressful situations. Other conditions, such as wetted trunks can also bring on some trunk diseases, like gummosis in citrus and crown rot in avocado. Simply preventing irrigation water on the trunks can limit these diseases. Other diseases, such as black streak, stem blight and bacterial canker in avocado are bought on by soil moisture stress.
Nutrients, especially nitrogen management, has been long known to affect levels of insects, such as scale, mealy bug and aphid. Encouraging lush growth helps sustain these insects, so reducing this growth tends to lower their numbers. Managing when canopy growth occurs can affect pest severity. Avocado thrips build their populations in the spring and moves easily from leaf to fruit causing significant scarring. By promoting leaf growth at flowering time with a nitrogen application, keeps the insect on the leaves and reduces fruit scarring. This also promotes growth that replaces leaves that have been damaged by persea mite. Likewise the incidence of citrus leaf miner damage can be reduced if spring pruning is avoided so that a flush of growth does not occur at the same time as the population is building. Timing of pruning is important in lemons to avoid wet periods of rain and fog to reduce the spread of hyphoderma wood rot fungus when its fruiting bodies are active.
Pruning can change pest pressure by changing the humidity in the canopy, introducing light and changing the climate supporting disease and pests. By making spray coverage more thorough, it also makes for a more effective application. Modified skirt pruning can have significant effects on mealy bug and scale control, fuller rose weevil incidence, ant colonization and snail damage. It's important that the trunk be protected as an avenue of movement for snail and ant control to get the best effects of this pruning. Skirt pruning also reduces problems with such weeds as bladder pod and the ladder effect of brown rot in citrus – fungal propagules splashed from the ground onto low-hanging fruit, which in turn is splashed to higher fruit.
Keeping a canopy clean of dust and fire ash also makes for more efficient biological control. Because predators are slowed in their search, they are less efficient. They also spend more time grooming their sensory organs, and this also slows them down. Parasites such as wasps are actually slowed by the physical abrasion to their tarsi. Dust also creates a drier environment, which is more hospitable to our pest mites. Watering picking rows, roads and even the trees themselves can lessen mite populations. Use of cover crops can also reduce dust and potentially provide pollen and nectar for predators and parasites. Of course cover crops create a whole new set of management issues, such as colder winter orchards and snails.
Finally harvest timing to avoid pest and disease is often overlooked. In avocado, fruit is often set in clusters. Greenhouse thrips love the microclimate created, and if in a size-pick the cluster is reduced, greenhouse thrips will often not be a problem. Harvest timing is also important in citrus. Fruit left too long on the tree can often develop septoria fungal spot. Picking in a timely manner reduces the incidence of this disease.
These are just a few examples of how cultural practices at the right time can reduce pest and disease problems.

- Author: Ben Faber
UF scientists make big stride toward greening-resistant citrus trees
by Brad Buck
University of Florida scientists achieved a major milestone in their quest to develop a citrus greening-resistant tree by sequencing the genome of a fruit plant that's a close cousin to citrus trees.
You'd need to print 54,000 pages of copy paper to see the complete genome sequence. But within it, scientists believe they've found genes to lay the groundwork to make citrus more tolerant and even resistant to certain diseases, including citrus greening.
UF/IFAS researchers sequenced the genome from trifoliate orange, in collaboration with scientists from the University of California at Berkeley, the U.S. Department of Energy's Joint Genome Institute and UF's Interdisciplinary Center for Biotechnology Research. The new genome will help those who breed new citrus trees that will survive under today's challenging conditions, including invasive pests, viruses and changing climates. Their research provides a powerful new tool to control the deadly consequences of the greening disease, which has severely damaged the state's multibillion dollar-a-year citrus industry.
“Very importantly, trifoliate orange and its hybrids have genes that can confer high tolerance to citrus greening and resistance to the Asian citrus psyllid, the insect that transmits greening to citrus,” said Zhanao Deng, a professor environmental horticulture and a senior author on the new UF/IFAS-led study. “This genome can be used as a reference template to sequence widely used trifoliate orange hybrid rootstock varieties.”
“Most people – even citrus growers – rarely see trifoliate orange. This is because they usually are the rootstock part of the tree, mostly underground,” said Fred Gmitter, a UF/IFAS professor of citrus breeding genetics and a co-author on the study.
Trifoliate oranges or their hybrids are grown at nurseries, and farmers use them as rootstock to grow the citrus that's above ground. Trifoliate orange and its hybrids were used as the rootstock for more than three million citrus trees in Florida alone in 2018-2019, UF/IFAS researchers say.
Trifoliate orange and its hybrid rootstocks accounted for 82% of the top 20 rootstocks used in the 2018-2019 citrus propagation cycle in Florida.
“Our trifoliate orange genome will allow scientists to develop new tools that can more speedily transfer beneficial genes into sweet oranges, grapefruit and breeding of new scion cultivars, which grow above the ground,” Deng said.
“Releasing the first trifoliate orange genome can be valuable for our citrus gene-editing efforts,” Gmitter said. Scientists are using gene editing to produce canker-resistant and greening-tolerant citrus.
“Because of our high-quality genome, re-sequencing of trifoliate orange hybrid rootstock varieties will be much easier, much quicker and much more cost-efficient,” said Deng. “Re-sequencing will enable development of new breeding tools, such as DNA marker-based selection, genomic selection of new rootstock varieties with resistance and tolerance to citrus greening, citrus tristeza virus and citrus nematodes. The new varieties might give higher yield and fruit quality.”
Citrus breeders want to introduce desirable genes from trifoliate orange into sweet orange, grapefruit and other varieties. It took decades to produce the first citrus scion variety (‘Sun Dragon') from crossing trifoliate orange and transferring some of its genes across multiple generations into sweet orange. With this new information from genome sequencing, that timeline can be dramatically reduced.
This project was funded by two grants from the Citrus Research and Development Foundation (CRDF) and a grant from the USDA/NIFA Citrus Disease Research and Extension (CDRE) program.
To see a video about the research and its implications, click here.
FredGmitter at it. Photo credit: Brad Buck, UF/IFAS.
/h1>- Author: Ben Faber
WASHINGTON, D.C. (September 14, 2020) –Going directly to those hurt most by the devastating citrus greening disease, researchers are asking organic citrus growers and other organic stakeholders to help them develop a holistic research program in their fight against the ruinous disease.
Citrus greening disease has been decimating domestic citrus in the United States over the past decade, and organic growers have been hit especially hard with few effective tools to control the disease. A research team led by the University of Florida is collaborating with The Organic Center, University of California, Riverside, a number of organic citrus growers and industry members to conduct a national review of how citrus greening disease is adversely impacting organic growers and other industry members.
Researchers are asking organic growers to fill out a survey based on their knowledge and experience about this devastating disease on their citrus crops. Here is the survey link. Information gathered will be used to develop a large-scale holistic research project proposal targeted toward protecting organic citrus growers from citrus greening, slowing its spread, and reducing damage to currently infected groves.
The project is funded through the USDA Organic Agriculture Research and Extension Initiative (OREI) program.
Researchers are requesting that survey responses be submitted by October 20. More information on this project is available on The Organic Center's website. |

- Author: Ben Faber
CRB Announces its
The Citrus Research Board (CRB) in coordination with the University of California Statewide Integrated Pest Management Program (UC IPM) is rolling out a new CRB Webinar Series, geared toward citrus growers and industry professionals.
Make sure you mark your calendars for the rest of the talks in the series. |
|
|
|
|
|
|
For more information, please contact
Petr Kosina, with UC IPM, at pkosina@ucanr.edu
