- Author: Kathy Keatley Garvey
“I got two phone calls almost simultaneously on my two cell phones, so I thought this could not be a prank, but I am still in disbelief,” said Leal, a UC Davis distinguished professor in the Department of Molecular and Cellular Biology, and former professor and chair of the Department of Entomology (now Entomology and Nematology)
The caller: The National Academy of Sciences (NAS)
The message: You've been elected a member of the National Academy of Sciences, the highest honor a scientist can achieve.
"Members are elected to the National Academy of Sciences in recognition of their distinguished and continuing achievements in original research,” a spokesperson related. “Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive. Current NAS membership totals approximately 2,400 members and 500 international members, of which approximately 190 have received Nobel prizes."
“As they say, many deserving and few lucky ones," Leal commented. "Bruce Hammock told me many years ago that when he was elected to NAS, he looked around and saw many deserving colleagues. Now I understand that feeling very well. It is a tremendous and humbling honor. I hope an imposter syndrome does not kick in.”
Hammock, a UC Davis distinguished professor who holds a joint appointment with the Department of Entomology and Nematology, was elected a NAS member in 1999.
They are the only UC Davis entomologists who are NAS members.
Leal: World Leader in His Field
Leal, a native of Brazil and educated in Brazil, Japan and the United States, joined the UC Davis Department of Entomology in 2000. In 2013, he accepted a position with the Department of Molecular and Cellular Biology. "Walter is an internationally recognized entomologist and a world leader in his field for his groundbreaking and transformative research in insect olfaction and chemical ecology,” Hammock said. “He is truly a renaissance man. He chaired our entomology department from 2006 to 2008, and under his tenure, our department was ranked No. 1 in the country. I've long admired (1) his rigorous fundamental research programs supported by National Science Foundation, National Institutes of Health, and the U.S. Department of Food and Agriculture, and other agencies, (2) how he tackles and solves multiple challenging problems in insect olfaction and chemical ecology, (3) his grasp of how to organize and moderate highly successful worldwide research webinars (4) his generosity in helping other succeed and (4) his finely honed sense of humor."
Leal solves entomological problems spanning agriculture, human health, and welfare. He translates pheromone technology to agriculturists and serves as a principal investigator for the Pacific Southwest Regional Center of Excellence for Vector-Borne Diseases (affiliated with the Centers for Disease Control and Prevention). He holds more than 20 patents.
“Walter has been exceptionally conscientious, active, and generous in professional service at UC Davis,” Hammock pointed out. "In August of 2021, he achieved a ‘first' for international science communication when he organized and led the extraordinary virtual conference ‘Insect Olfaction and Taste in 24 Hours Around the Globe.' I especially applaud him for elucidating the mode of action of the insect repellent DEET, developed in 1946 and known as ‘the gold standard of repellents.' Its mode of action remained an enigma for six decades until Walter's discovery. In researching the neurons in mosquito antennae sensitive to DEET, he isolated the first DEET-sensitive odorant receptor, paving the way for the development of better repellents.”
May Berenbaum, professor and head, Department of Entomology, University of Illinois-Urbana-Champaign, National Medical of Science Laureate, NAS member, and editor of the Proceedings of the National Academy of Sciences, earlier wrote that “Dr. Leal is indisputably a world leader in the field of insect chemical ecology whose work over the course of his long and distinguished career has transformed basic knowledge of insect olfactory mechanisms and inspired innovative practical applications for sustainable management of insects of importance in agriculture and human health. He has contributed significantly to the current understanding of the structure and function of every component of olfaction, including receptors, binding proteins, and degrading enzymes, revising classic paradigms along the way. No textbook and no course on insect chemical communication could be considered complete without mentioning his landmark research achievements.”
'Just Like in a Honey Bee Colony'
Leal recently was named the 2024 recipient of the UC Davis Academic Senate's Distinguished Research Award, and will present a lecture on “Just Like in a Honey Bee Colony--It Takes a Team in the UC Davis Hive to Win an Award” at the Academic Senate's Faculty Distinguished Research Award Lecture Lunch on Tuesday, May 7 from noon to 1 p.m. in the UC Davis Conference Center.
Leal is the first UC Davis faculty member to receive the Academic Senate's trifecta of awards: outstanding teaching, public service, and research. Leal received the Academic Senate's 2020 Distinguished Teaching Award for Undergraduate Teaching, and the 2022 Distinguished Scholarly Public Service Award.
Among Leal's many honors: Fellow of the Entomological Society of America (2009), American Association for the Advancement of Science (2005), and the National Academy of Inventors (2019). He was elected a trustee of the Royal Entomological Society in February 2024.
Leal holds a Ph.D. in applied biochemistry from the University of Tsukuba, Japan, with subsequent postdoctoral training in entomology and chemical ecology at the National Institute of Sericultural and Entomological Science (NISES) and Cornell University, respectively. He was the first non-Japanese person to earn tenure at Japan's Ministry of Agriculture, Forestry, and Fisheries.
- Author: Kathy Keatley Garvey
It works.
However, not everyone wants to use DEET, a synthetic insect repellent. There's that smell, for one thing. "Properties that people do not like in addition to the smell is that DEET is a solvent for plastic," says chemical ecoloigst Walter Leal of the University of California, Davis. "So, one gets eyeglass frames and watchbands dissolved by DEET."
There's also "the misconception that everything synthetic is bad."
So what is it with DEET that repels mosquitoes? What odorant receptor is involved? Mosquitoes, as we know, detect smells with their antennae.
The Leal lab today (Oct. 27) published research in the Proceedings of the National Academy of Sciences (PNAS) that pinpoints the exact odorant receptor that repels them. They also identified a plant defensive compound that might mimic DEET, a discovery that could pave the way for better and more affordable insect repellents.
For more than six decades, DEET has been known as the gold standard of insect repellents. More than 200 million people worldwide use the chemical insect repellent, developed by scientists at the U.S. Department of Agriculture and patented by the U.S. Army in 1946.
So when Leal and his team--project scientist Pingxi Xu, postdoctoral scholar Young-Moo Choo, and agricultural and environmental chemistry graduate student Alyssa De La Rosa-- published their groundbreaking research, “Mosquito Odorant Receptor for DEET and Methyl Jasmonate,” they drew global attention.
In their research, they examined the receptors of the southern house mosquito, Culex quinquefasciatus, which transmits such diseases as West Nile virus.
The researchers set out to investigate two hypotheses regarding DEET's mode of action: activation of ionotropic receptor IR40a vs. odorant receptor(s). “Ionotropic receptor is another family of olfactory receptors, which seem to be the ancestral version when insects were aquatic,” Leal said. “So, the ionotropic receptors normally detect acid, bases, and other water soluble compounds.”
“Vector-borne diseases are major health problems for travelers and populations living in endemic regions,” said Leal. “Among the most notorious vectors are mosquitoes that unwittingly transmit the protozoan parasites causing malaria and viruses that cause infections, such as dengue, yellow fever, chikungunya, and encephalitis.”
Leal said that diseases transmitted by mosquitoes destroy more lives annually “than war, terrorism, gun violence, and other human maladies combined. Every year, malaria decimates countless lives – imagine a city of San Francisco perishing to malaria year after year. The suffering and economic consequences in endemic areas are beyond imagination for those living in malaria-free countries. Both natives and visitors to endemic areas want to keep these ‘infected needles' at bay. In the absence of vaccines for malaria, dengue, and encephalitis, one of the most ancient and effective prophylactic measures against mosquito-borne diseases is the use of DEET.”
Dan Strickman of the Bill and Melinda Gates Foundation, not involved in the study, praised the work. “We are at a very exciting time for research on insect repellents,” said Strickman, senior program officer of the Global Health Program's Vector Control. “ For decades, the field concentrated on screening compounds for activity, with little or no understanding of how chemicals interacted with mosquitoes to discourage biting. Use of modern techniques that combine molecular biology, biochemistry, and physiology has generated evidence on how mosquitoes perceive odors.”
Said zoologist Paul Weldon of the Smithsonian's Conservation Biologist Institute, also not involved in the study: “Since DEET is strictly synthetic and not a natural product, it has been challenging to understand the adaptive nature of the response it elicits. It is not as if the compound emanates from, say, spider webs or fishy water, where avoidance by mosquitoes would make sense. Xu et al. have solved the mystery of where the DEET response comes from: it is in response to plant chemical defenses.”
“This, by the way, also explains why the DEET response is widespread, occurring in many arthropods, including those that are not ectoparasitic -- like cockroaches,” Weldon said. The repellence of other arthropods by DEET may have tipped off some of those investigating the DEET response, but I'm not sure that it did. The focus of research on DEET seems to have been with the organisms in which it just so happened to be discovered -- mosquitoes. The Xu et al. study suggests that there is a much broader array of DEET-sensitive organisms than previously suspected. No doubt, this finding will assist further investigations of it.”
Professor John Pickett, Rothamsted Research, UK, also not involved in the study, called the link between the plant compound and synthetic insect repellent, DEET as a “surprising evolutionary link.”
Pickett, the Michael Elliott Distinguished Research Fellow and Scientific Leader of Chemical Ecology at Rothamsted Research and a foreign associate of the National Academy of Sciences, said: “Not only does this work demonstrate that a mosquito response to the gold standard repellent DEET, as well as the more recently developed repellents, is mediated by a specific odorant receptor (OR136 for the southern house mosquito Culex quinquefasciatus) but that the receptor responds specifically also to methyl jasmonate, involved in plant hormone-based defense against insects, which suggests a surprising evolutionary link between these types of insect interactions.”
The UC Davis researchers pointed out that “insect repellents have been used since ancient times as prophylactic agents against diseases transmitted by mosquitoes and other arthropods, including malaria, dengue fever, and encephalitis. They were developed from plant-based smoke or extracts (essential oils) into formulations with a single active ingredient.”
Progress toward development of better and more affordable repellents has been slow, they said, because scientists weren't sure which odorant receptor was involved. Now they are.
Mosquito researcher Anthony "Anton" Cornel, associate professor with the UC Davis Department of Entomology and Nematology, and based at the UC Kearney Agricultural Research and Extension Center, Parlier, provided the mosquitoes that allowed the Leal lab to duplicate his mosquito colony at UC Davis.
Look for more exciting research to come!
- Author: Kathy Keatley Garvey
The competition was fierce.
We're talking 800 postdoctoral scholars on the UC Davis campus, 12 finalists and two winners.
Chemical ecologist Zain Syed, who helped discover the mode of action for the insect repellent DEET in the Walter Leal lab, UC Davis Department of Entomology, emerged as one of the two winners.
The occasion: the sixth annual postdoctoral scholar research awards, sponsored by the UC Davis Postdoctoral Scholars’ Association and the Office of Graduate Studies.
Syed and fellow recipient Izumi Maezawa of the Department of Pathology and Laboratory Medicine, UC Davis Health System, each received a certificate and a $500 cash prize.
So, the next time you’re applying DEET to ward off mosquitoes, you can thank Leal and Syed for why mosquitoes won’t go near you. For the past 50 years, scientists assumed that DEET jams the senses of a mosquito or masks the smell of the host.
Not so. Mosquitoes can smell DEET and they avoid it because it smells bad to them. No jamming. No masking. Just a smell that's not in their comfort zone.
The chemical ecologists identified the olfactory receptor neuron in the antenna that detects the repellent. Their work led to one of the most popular research articles ever published in the Proceedings of the National Academy of Sciences (PNAS). The research paper has been loaded 9317 times from August 2008 through April 2009.
What this research means is we may see a whole new direction in the development of novel and promising insect repellents.
Syed, a native of
“Zain has an an encyclopedic knowledge of the literature and he designs well-thought experiments,” said Leal, also praising him as “a good mentor to students in the department, college and elsewhere on campus.”
“Zain is the type of postdoc that every principal investigator dreams about one day having in their own laboratory,” wrote professor Gabrielle Nevitt of Neurobiology, Physiology, and Behavior,
Entomology professor Penelope Gullan, who supported the nomination, said: "As a faculty member in the same department as Dr. Syed, I have watched his research progress and accomplishments over the past four years. His recent achievements have been truly outstanding in terms of significant research findings and publications in highly rated journals."
A dynamo, a maverick and an inspiration: mosquitoes beware!
/st1:place>/st1:placename>/st1:placetype>/st1:place>/st1:country-region>/st1:city>/st1:country-region>/st1:place>/st1:country-region>/o:p>/o:p>/o:p>/o:p>/o:smarttagtype>/o:smarttagtype>/o:smarttagtype>/o:smarttagtype>/o:smarttagtype>
- Author: Kathy Keatley Garvey
We know it works, but how?
Just how does DEET work? Does it jam the senses of a mosquito? Does it mask the smell of the host?
You spray the chemical repellent on your arm and thankfully, those darn skeeters leave you alone. They need a blood meal to develop their eggs, so off they buzz to find another host, one that's not so inhospitable.
But why do mosquitoes avoid DEET?
Well, they avoid it because it smells bad to them. Yes, they can smell it--that's why they avoid it.
The groundbreaking research, the work of UC Davis chemical ecologist Walter Leal and researcher Zain Syed, is published today in the Proceedings of the National Academy of Sciences (PNAS), which lifted the news embargo at 2 p.m., Pacific Standard Time.
The research contradicts a Science article published in March by researchers at Rockefeller University, New York. The researchers, as other scientists have long believed, said mosquitoes can't smell DEET because it jams the odorant receptors in insect nervous systems.
The Leal-Syed research solidly establishes the real mode of action.
Noted entomologist James "Jim" Miller of Michigan State University praised the Leal-Syed work as correcting “long-standing erroneous dogma.”
Said Miller: "For decades we were told that DEET warded off mosquito bites because it blocked insect response to lactic acid from the host -- the key stimulus for blood-feeding. Dr. Leal and co-workers escaped the key stimulus over-simplification to show that mosquito responses -- like our own -- result from a balancing of various positive and negative factors, all impinging on a tiny brain more capable than most people think of sophisticated decision-making.”
“This new work corrects long-standing erroneous dogma, and shows that recent work on DEET mode-of-action published in the flagship journal, Science, apparently was flat-out wrong,” Miller said. “One of the great attributes of science is that, over time, it is self-correcting."
Leal, past president of the International Society of Chemical Ecology and former chair of the UC Davis Department of Entomology, said previous findings of other scientists showed a “false positive” resulting from the experimental design.
Now that we know that skeeters can smell it, this will no doubt lead to better methods of insect control. Or, as Major Dhillon, president of the American Mosquito Control Association and district manager of the Northwest Mosquito and Vector Control District, Riverside, said: ”In the future, this new knowledge can be incorporated into developing new repellents and may be in control strategies for Culex quinquefasciatus and other mosquitoes.”
Those darn female mosquitoes, always in a “Let-us-prey” mood, have clearly met their match: the "why" behind "Let us spray."