- Author: Kathy Keatley Garvey
"Can Genetically Modified Mosquitoes End Disease?" spotlights the work of Gregory Lanzaro, director of the UC Davis Vector Genetics Laboratory, and a professor in the School of Veterinary Medicine's Department of Pathology, Microbiology and Immunology, and his "blood brother," longtime fellow mosquito researcher Anthony "Anton" Cornel, a member of the UC Davis Department of Entomology and Nematology (ENT) faculty, director of the UC Mosquito Control Research Laboratory, and researcher in the Vector Genetics Laboratory.
The New York Times' feature, written by global health reporter Stephanie Nolen, appears in the Sept. 29 edition.
An earlier news story announcing the $10.2 million grant to the UC Davis Vector Genetics Laboratory, from Open Philanthropy, was posted Jan. 25, 2022 on the UC Davis Department of Entomology and Nematology website. In that story, Lanzaro, former ENT faculty member and former director of the now-folded UC Mosquito Research Program, explained that the research involves "the release of Anopheles mosquitoes engineered to prevent transmission of the malaria parasite Plasmodium falciparum on the islands. We are working in collaboration with the UC Irvine Malaria Initiative, a research consortium including scientists from UC Irvine, San Diego and Berkeley as well as Johns Hopkins University. We are working toward the application of advanced genetic tools aimed at the mosquito vector. It is our belief that this approach, used in conjunction with early malaria treatment and detection, can provide a cost effective, sustainable, and environmentally responsible program to ultimately eliminate malaria from Africa.”
"The malaria situation in São Tomé and Príncipe, an African island nation with a population of 200,000, epitomizes the current challenge in the global struggle against the disease," Nolen wrote. "The country is among the world's least developed, and it has depended on foreign aid to fight malaria. Various campaigns over the past 50 years drove cases down, only to have them resurge worse than ever when the benefactor moved on."
Lanzaro told Nolen that "we've been working on this for 30 years, and from the beginning we said, It has to work, but it also has to be inexpensive, and it has to be sustainable. And we believe we have it...We have got to get going. We can't just keep saying 10 more years, 10 more years. Six million people have died while we've been fiddling around.”
Cornel agrees. In the initial UC Davis news story, he commented: "The fight to reduce and possibly eliminate malaria continues and becomes especially challenging as efforts to reduce malaria morbidity have plateaued since 2015. Therefore, we must seriously consider new tools. One such tool is genetically modifying the major mosquito vector in the Afrotropics so that it cannot transmit malaria. The project aims to use genetically modified mosquito strategy to reduce and eliminate malaria from the Islands of São Tomé and Príncipe, as proof of concept, before using this technology on larger scales on mainland Africa."
The New York Times' story pointed out that "genetic modification is a controversial endeavor. Governments are hesitant, and few in Africa have laws to regulate the use of the technology. Its risks lie in the unknowns: Could the modified mosquito evolve in some way that has harmful effects on the rest of the ecosystem? Could it prompt a dangerous mutation in the malaria parasite, which will find a new way to spread to survive?"
"These fears," Nolen wrote, "are why the University of California team chose São Tomé and Príncipe for its experiment: The island nation is isolated and has limited international traffic. The team has also built in a plan to wipe out the population of its modified mosquitoes if there is a need to end the experiment for any reason."
See the entire news story, Can Genetically Modified Mosquitoes End Disease?