- Author: Kathy Keatley Garvey
Host is medical entomologist/geneticist Geoffrey Attardo, assistant professor, UC Davis Department of Entomology and Nematology. The Zoom link is here.
"Tsetse flies house an assortment of endosymbiotic bacteria and serve as the prominent vectors of pathogenic African trypanosomes," Weiss says in his abstract. "Tsetse and insect stage trypanosomes are metabolically dependent on the fly's endosymbiotic bacteria in order to maintain their physiological homeostasis. I will describe these interdependencies and
how they can be exploited to decrease tsetse's vector competency."
Weiss received his master's degree from the University of Queensland, Brisbane, in 1997 and his doctorate from the University of Alberta, Canada (2003).
"My research focuses on acquiring a better understanding of the relationship between insect disease vectors and their associated micro-organisms," he writes on his website. "To this end, I currently use the tsetse fly (Glossina morsitans morsitans) as a model system. These insects are the sole vectors of pathogenic African trypanosomes, which are the causative agent of Human African trypanosomiasis. Tsetse flies also harbor indigenous endosymbiotic bacteria that are intimately associated with their host's physiological well-being. I am interested in learning more about (1) the evolution adaptations that permit host tolerance of bacterial endosymbionts, (2) how symbiotic bacteria impact host physiology, with specific emphasis on nutritional supplementation and host immunity, and (3) how to use microbial symbionts to reduce disease vector competence."
Cooperative Extension specialist Ian Grettenberger coordinates the winter seminars. For technical issues, contact him at imgrettenberger@ucdavis.edu.
- Author: Kathy Keatley Garvey
(Editor's Note: Geoffrey Attardo, assistant professor, UC Davis Department of Entomology and Nematology, published this piece July 29, 2020 on The Conversation website. This article is republished from The Conversation under a Creative Commons license. Read the original article.)
Bloodthirsty tsetse flies nurse their young, one live birth at a time – understanding this unusual strategy could help fight the disease they spread

By Geoff Attardo, University of California, Davis
Tsetse flies are bloodthirsty. Natives of sub-Saharan Africa, tsetse flies can transmit the microbe Trypanosoma when they take a blood meal. That's the protozoan that causes African sleeping sickness in people; without treatment, it's fatal, and millions of people are at risk due to the bite of a tsetse fly.
My entomology research focuses on insects that feed on the blood of people and animals. From a human health standpoint, understanding what makes all these bugs tick is key to developing ways to control them and prevent transmission of the diseases they carry, such as malaria, dengue, Lyme disease, West Nile virus and many others.
Tsetse flies stand out from their blood-feeding cousins the mosquitoes and ticks because of their unique reproductive biology. They give birth to live young and, even more unusual, the mother lactates and provides milk for her offspring. Here's how it all works – and why their unusual reproduction strategy might be a key to controlling tsetse flies and the parasite they carry once and for all.
From egg to larva
Scientists know of other flies that hold onto their eggs in their reproductive tract until they hatch into young larvae, with each brood consisting of dozens of offspring. The mother then tries to find a suitable source of nutrition in the environment, deposits the larvae and leaves them to survive on their own. The mother does not provide any nutrition for her young.
That's the standard fly way of life. Tsetse flies take a different approach.

Female tsetse flies develop just one single egg at a time. When the egg is complete, the mother moves it from her ovaries into her uterus in a process called ovulation. Once in the uterus, the egg is fertilized with sperm the female has stored in an organ called the spermatheca. While females can mate multiple times, they obtain all the sperm they need for their lifetime from a male fly during a single mating event.
After fertilization, the female keeps the egg in her uterus for five days while an embryo develops within the egg. When the embryo is ready, the egg hatches in the uterus of the female and the tsetse fly larva begins its life living inside its mother's uterus.
Milk meals for baby
Here's where tsetse flies dramatically diverge from most other insects.
Attached to the mother's uterus is a specialized gland that makes a milk-like substance. The organ is called the milk gland, and it produces a rich mixture of fats and particular proteins that provide the larva with all the nutrition it needs to develop into an adult.

Amazingly, many tsetse milk proteins are very similar in function to those found in the milk produced by mammals.
Just like in mammals, the milk also transfers beneficial bacteria from the mother to the offspring. These bacteria are essential for tsetse flies, and without them adult female flies are unable to reproduce.
After five or six days of developing and feeding on milk, the larva is fully grown and ready to enter the world. The mother finds a safe spot and gives birth. The larva immediately burrows underground to avoid predators and parasites.
Once buried, the outer surface of the larva's skin hardens and turns black, forming a protective shell. This is called the pupal stage and it lasts for around three weeks. During this time, the pupa transforms into an adult fly.

It then emerges from the pupa, climbs out of the ground, and begins its life as an adult tsetse fly looking for hosts to blood-feed on and other tsetse flies to mate with.
Why live birth?
Why would an insect evolve this slow and resource-intensive way to reproduce?
One idea is that this method provides a defensive advantage relative to free-living larvae against parasites and predation. Larvae on their own have few (if any) ways to defend against these threats. But keeping larvae in the mother's uterus provides shelter and a guaranteed food source. While this strategy is much slower, scientists think the extra maternal care results in higher larval survival rates. It's a matter of quality over quantity.
A result of this reproductive strategy is that tsetse fly populations are small and slow to recover from control efforts, relative to more prolific insects like mosquitoes.
My colleagues and I hope that we can parlay our understanding of the molecular processes that regulate tsetses' milk production and mating behavior into new environmentally friendly, cost-effective and tsetse-specific control strategies for these insects.
The sleeping sickness tsetse flies spread is a potential issue for millions of people in 36 sub-Saharan countries, though the number of annual cases has decreased drastically thanks to major control efforts – including trapping flies, applying insecticides and releasing sterile males to the environment where they mate with wild females but don't produce offspring. Ultimately, we'd like to contribute to the World Health Organization's goal of eliminating African sleeping sickness by 2030 with a new way to prevent the transmission of disease-causing trypanosomes to people and animals.
- Author: Kathy Keatley Garvey
The event is free and open to the public and will be hosted by Jared Shaw of the UC Davis College of Letters and Science.
“It is actually going to be a very basic talk aimed at lay audiences and kids,” Attardo says. “I'll be talking about my background, how I became an entomologist and how I ended up working on tsetse flies. Then I am going to discuss the life history of tsetse flies, where they can be found, why they are of medical importance and how their reproductive biology differs so dramatically from other flies that people are familiar with. My plan is to go over their reproductive cycle, how they develop intrauterine larvae, the reproductive adaptations that allow them to perform this feat and then go over what we know about tsetse milk secretions and how they compare to mammalian milk in terms of nutritional content.”
“The aim is for it to be very informal, with very little scientific jargon and to be discussion-oriented so that there is lots of questions and answers. I am also bringing some items from the lab that can be passed around the audience for show and tell (homemade tsetse cages, the blood feeding system we use to feed the flies and some tsetse flies preserved in alcohol).
Attardo focuses his research on numerous aspects of the physiology of tsetse fly reproduction, with the goal to identify and understand key aspects of its reproductive biology. He joined the UC Davis Department of Entomology and Nematology in 2017 from the Yale University School of Public Health, New Haven, Conn., where he researched tsetse flies in the lab of Serap Aksoy.
Attardo considers the tsetse fly "one of the champions of the insect world."
"In addition to being vectors of a deadly disease, Trypanosomiasis, these flies have undergone amazing alterations to their physiology relative to other insects," he says. "Some examples of this are their ability feed exclusively on blood, their obligate relationship with a bacterial symbiont, the fact that they lactate and that they give birth to fully developed larval offspring."
Attardo is the co-author of Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation, published in January 2015 in the Annual Review of Entomology.
- Author: Kathy Keatley Garvey
Tsetse fly expert Geoffrey Attardo, a medical entomologist and assistant professor with the UC Davis Department of Entomology and Nematology, is featured in a New York Times' article today (Feb. 12) on tsetse flies.
His work drew the attention of Pulitzer-Prize winning science writer Natalie Angier who penned the article, "Everywhere in the Animal Kingdom, Followers of the Milky Way" (subhead: "As scientists learn more about milk's evolution and compositional variations, they are redefining what used to be a signature characteristic of mammals.")
"Most female flies take a low-rent approach to parenthood, depositing scores of seed-sized eggs in the trash or on pet scat to hatch, leaving the larvae to fend for themselves," she wrote. "Not so the female tsetse fly. She gestates her young internally, one at a time, and gives birth to them live. When each extravagantly pampered offspring pulls free of her uterus after nine days, fly mother and child are pretty much the same size."
Then she quoted the UC Davis medical entomologist:
“It's the equivalent of giving birth to an 18-year-old,” said Geoffrey Attardo, an entomologist who studies tsetse flies at the University of California, Davis.
Attardo focuses his research on numerous aspects of the physiology of tsetse fly reproduction, with the goal to identify and understand key aspects of its reproductive biology. He joined the UC Davis Department of Entomology and Nematology in 2017 from tje Yale University School of Public Health, New Haven, Conn., where he researched tsetse flies in the lab of Serap Aksoy.
In terms of "fascinating physiological adaptations," Attardo considers the tsetse fly "one of the champions of the insect world!" As he explained to us in a 2017 news story: "In addition to being vectors of a deadly disease, Trypanosomiasis, these flies have undergone amazing alterations to their physiology relative to other insects. Some examples of this are their ability feed exclusively on blood, their obligate relationship with a bacterial symbiont, the fact that they lactate and that they give birth to fully developed larval offspring."
"The opportunity to study the adaptations these flies have made is like opening a toy chest for an insect physiologist. My work in tsetse has focused on the molecular biology underlying the adaptations associated with the development of lactation, symbiosis, male and female mating interactions/physiology and nutrient metabolism and mobilization.”
Attardo's published research is drawing national and international attention, as are his incredible images of tsetse flies. He won the 2010 Fogarty Grantee Photo Contest with an image of a tsetse fly. The Yale School of Public Health magazine featured his images on “An Eye for the Tsetse Fly.” The Los Angeles Times published his remarkable video (in 2014) of a tsetse fly giving birth. Also, see his portraits of the tsetse fly on Live Science, published in 2014.
