- Author: Ben Faber
At a recent CA Avocado Society meeting there was a discussion about bout flowmeters and their selection. Flowmeters measure the volume of water moving through a full-flowing closed pipe and as such are one of the key components of an irrigation system whether drip, microsprinkler or full pressure systems. They are essential for managing irrigation efficiently and for monitoring the performance of the irrigation system. Managing irrigation efficiently requires: (1) knowing how much water the crop has used since the last irrigation (irrigation schedu7ling); and (2) operating the irrigation system to apply only the amount of water desired. A flowmeter gives the grower the information needed to apply only the amount of water required.
A critically overlooked benefit of a flowmeter is that it makes it possible to identify changes in flowrate during the season (measured at the same pressure), which may indicate problems such as clogging of emitters or filters, leaks in the system or problems with the pump or well.
There are several types of flowmeters and each has their pluses and minuses. Propeller meters are the most commonly used, but can pose two potential difficulties: debris in the water and a small loss of pressure which can be a problem with low flow systems. Alternatives are magnetic meters, ultrasonic, turbine and venture meters. Proper selection is based on pipe size, range of flow and pressure loss. But as with everything it depends on proper installation and maintenance.
Attached is a nice little overview by Larry Schwankl on how to choose a flowmeter for your situation.
flow meters
- Author: Ben Faber
Drought may not be the right time to be thinking about this, or maybe it is. It concerns managing water and any time a grower uses water more effectively the crop performs better. But fog can be a significant factor in water management.
As fog passes through a tree canopy, it is absorbed by leaves and coats them. Before the tree will transpire water, the water coating must first be evaporated before the tree loses internal water. This water use is not accounted for in a water budget schedule using evapotranspiration based inputs, such as from CIMIS. For deciduous trees, this is often not of concern, because in the winter they don't have leaves and therefore are not transpiring anyway. For evergreen subtropicals like citrus and avocado, this could be an important source of water.
In many situations in the Central Valley and along the coast there can be periods where fog can represent a significant proportion of the water requirement for an orchard. These periods would be for winter tule fog in the Valley and along the coast in the spring and early summer. A recent publication by Rick Snyder at UC Davis has just been released that shows how this fog water can be incorporated into an irrigation schedule. You can see it at the UC's California Institute for Water Resources website: http://anrcatalog.ucanr.edu/pdf/8532.pdf, http://ciwr.ucanr.edu/california_drought_expertise/droughttips/
