- Author: Kathy Keatley Garvey
The grant, titled "Strengthening Honey Bee Health and Crop Pollination to Safeguard Food Availability and Affordability," and headed by principal investigator Boris Baer, a UC Riverside professor of entomology, also includes Davis, San Diego and Merced campuses. “I'm very excited about so many different kinds of bee expertise joining forces through this project,” Baer said.
Honey bees pollinate more than 80 agricultural crops, including almonds, apples, blueberries and cherries. The pollination services of these tiny agricultural workers account for about a third of the American diet. However, pesticide exposure, spread of parasites and pathogens, habitat destruction and environmental changes are challenging beekeepers, resulting in decreased pollination services and increased food prices.
The grant is an important one. Co-principal investigator Extension apiculturist Elina Lastro Niño of the UC Davis Department of Entomology and Nematology, which operates the Harry H. Laidlaw Jr. Honey Bee Research Facility, says it well: "Most excitingly, this funding will not only support research that will help improve pollinator health so crucial for California's agriculture, but it will provide opportunities for training of students and postdoctoral scholars. Work focused on improving honey bee stocks via novel tools aligns well with ongoing work in the Niño lab and will further cement collaborations with beekeepers and growers.”
Niño, who works closely with California beekeepers, launched and directs the California Master Beekeeper Program, which uses science-based information to educate stewards and ambassadors for honey bees and beekeeping.
Other co-principal investigators are James Nieh and Joshua Kohn of UC San Diego, and a trio from UC Riverside: Kerry Mauck, Tsotras Vassilis, and Kim Hyoseung. At Merced, Marilia Palumbo Gaiarsa serves as a co-investigator.
The UC scientists plan a three-pronged approach to resolve the issue: develop better breeding programs, better medications and treatments, and better tools to monitor bee health in the hives. Small “listening and smelling” devices will be placed inside the hives to monitor bee health.
"Safeguarding honey bees and their pollination services requires beekeepers to be better able to manage the health and survival of colonies, which requires research into the causal factors and interactions affecting pollinator health, and the development and implementation of novel tools in close collaboration with industry partners. To do this, we will form a California wide, cross disciplinary research network and
- experimentally study the ecological and molecular factors and their interactions that affect honey bee health and their interactions to identify biomarkers of their health
- use the knowledge gained to develop and deliver new, effective solutions for stakeholders, including remote sensing of bee health, a marker-assisted breeding program, and the development of novel medications,
- build a research industry nexus to conduct collaborative research. We will also develop and deploy new extension and outreach modules that will be offered through UC Cooperative Extension statewide. We will support California beekeepers to build and maintain a sustainable and profitable beekeeping industry, which has implications for food security on a national level."
The co-principal investigators also noted in their grant proposal that "The current coronavirus pandemic and impending recession is putting more pressure on agriculture to provide sufficient and affordable food. Honey bees are key to such efforts, and supporting a California based beekeeping industry also decreases the state's dependence on managed pollination from elsewhere, thereby creating new jobs and income."
Funding also will help provide research opportunities for undergraduates, including underrepresented students, with the goal of ensuring that the pipeline of students who enter research, academia, industry, and multiple other professions reflects the diversity of the communities in which they learn and work.
This is all a win-win situation.
As Kohn said in a UC San Diego news release: “This network of bee researchers comprises a unique mixture of expertise that can apply highly multidisciplinary approaches to benefit the honey bee industry essential to the production of many of California's most economically important crops."
- Author: Kathy Keatley Garvey
Those are some of the questions that Wolf asks. "We aim to find some of the molecular and neural circuit mechanisms that govern adult behavior in the fruit fly Drosophila."
Wolf, who holds a doctorate in molecular and cell biology from UC Berkeley, will speak on "Drinking Drosophila and Drunk Drosophila: Genes and Circuits for Simple Behaviors" at the next UC Davis Department of Entomology and Nematology seminar, set for 4:10 p.m., Wednesday, Oct. 31 in 122 Briggs Hall.
"How is motivation coded in a small brain?" Wolf asks. "How does a natural motivation like a thirst differ from drug-seeking in addiction? We use circuit mapping, genetics and behavior in Drosophila melanogaster to find out internal states combine with environmental information to select behavioral programs and suppress others."
Molecular geneticist Joanna Chiu, associate professor and vice chair of the UC Davis Department of Entomology and Nematology, will introduce the speaker and serve as the host. Medical entomologist Geoffrey Attardo coordinates the fall seminars.
The Drosophila fly nervous system is remarkable. Wolf says it's "a million-fold simpler than ours, yet flies are capable of carrying out remarkably sophisticated tasks that are modified by past experience and internal states. However, the biological bases for even simple behavioral actions that serve as models for more complex tasks remain mysterious. Understanding how circuits function in a model organism where rapid progress can be made with highly sophisticated tools is likely to provide insight into how more complicated brains work."
No wonder that Drosophila melanogaster, is a favorite model organism among biomedical researchers.
"There are many technical advantages of using Drosophila over vertebrate models; they are easy and inexpensive to culture in laboratory conditions, have a much shorter life cycle, they produce large numbers of externally laid embryos and they can be genetically modified in numerous ways," according to Barbara Jennings in ScienceDirect.com. "Research using Drosophila has made key advances in our understanding of regenerative biology and will no doubt contribute to the future of regenerative medicine in many different ways."
"Over the past four decades," Jennings points out, "Drosophila has become a predominant model used to understand how genes direct the development of an embryo from a single cell to a mature multicellular organism." Indeed, numerous scientists have won Nobel Prizes for their research on the fruit fly.
What does the scientific name, Drosophila melanogaster, mean? Drosophila means "dew lover" and melanogaster means "dark gut."