- (Public Value) UCANR: Protecting California's natural resources
- Author: Michelle Leinfelder-Miles
Over the last few years, I have been working on a project to characterize a suite of soil health properties in alfalfa receiving full and deficit irrigation. Soil health has been described as the ability of soil to function and is characterized by biological, chemical, and physical soil properties that are sensitive to changes in management. The idea for this project developed after the 2012-2015 drought when water shortages and regulatory curtailments meant that growers had to make tough decisions on how to apply scarce water resources. Some growers opted to cut irrigation to alfalfa since it is a deep-rooted crop that can scavenge water and nutrients from the soil profile. (See this recent blog post by UC Alfalfa and Forage Specialist Dan Putnam, and Farm Advisor Rachael Long on the resiliency of alfalfa during drought.) I had a hunch, however, that while alfalfa may be adapted to survive drought conditions, soil health properties might be negatively impacted because water is essential to life in the soil, facilitates nutrient movement and availability, and influences soil physical characteristics, among other things. Fortunate for me, there was a research trial at UC Davis where I could test this idea.
I view alfalfa as a model crop for studying soil health under restricted water conditions because practices like crop rotation and tillage do not occur over the four or more years of an alfalfa stand. Therefore, those practices would not confound the results. From this experiment, we are learning how imposing varying levels of deficit at different stages of the cropping season impact soil properties, which will help us optimize deficit irrigation strategies for alfalfa. Additionally, the deficit treatments serve as a proxy for drought and could potentially demonstrate how prioritization of water uses during drought may impact soil conservation outcomes.
Data analysis is ongoing, but preliminary results suggest that soil health may not be resilient under deficit irrigation or drought, even if alfalfa is. When the trial began in Spring 2019, there were no differences in rootzone salinity among treatments, which averaged 0.41 dS/m. After two cropping seasons where deficits were imposed, the 60 percent ETc treatment with the water cut-off toward the end of the season (CT) resulted in significantly higher rootzone salinity down to the 36-inch depth (Figure 2). The salinity in that treatment was higher than even the 40 percent ETc treatment that had the sustained deficit (SD) throughout the entire season. In other words, it appears that the timing of the deficit is more important than the amount of deficit, and applying water throughout the season – even if the amount is severely reduced – appears to mitigate salinity build-up in the rootzone. Of note, salinity is not high enough to be problematic at this site. The overall ECe of the soil is low, and water quality is generally good at this location. I would expect, however, that in locations where soil and/or water has higher salinity to begin with, then deficit irrigation that includes a water cut-off could be problematic.
There will be a lot more information to come about this project in the near future, but the salinity information seemed timely to share given our current water year. In addition to Dan, Isaya, and Umair, I want to acknowledge Daniel Geisseler (UC Nutrient Management Specialist), Will Horwath (Professor of Soil Biogeochemistry), and graduate student Veronica Suarez Romero who have helped on soil nitrogen and carbon testing. I also want to acknowledge the South Delta Water Agency for financial support of the project.
- Author: Michelle Leinfelder-Miles
- Author: Mohamed Nouri
- Author: Brent Holtz
In 2020, we established a trial to evaluate soil properties and kidney bean yield following whole orchard recycling of a walnut orchard. Whole Orchard Recycling (WOR) occurs after the productive life of an orchard and is the process of grinding or chipping trees, spreading the wood chips evenly over the soil surface, and then incorporating the biomass into the soil. WOR has become more common in recent years because air quality regulations restrict growers' ability to manage biomass by burning. Additionally, half of California's biomass power generation plants have closed, and those that still operate are no longer paying for wood chips.
While the process of WOR came about due to biomass management restrictions, researchers have been evaluating its potential benefits for soil health and water management. This is because the practice incorporates large quantities of organic carbon (C) into the soil, and soil C influences other soil properties. The California Department of Food and Agriculture (CDFA) Healthy Soils Program (HSP) now recognizes the practice in their incentives program and provides growers with up to $800 per acre for WOR. The San Joaquin Valley Air Pollution Control District also supports growers who recycle orchards with up to $600 per acre.
While there are benefits associated with incorporating large quantities of C into the soil, there are also tradeoffs. The woody biomass of the trees has a high carbon to nitrogen (C:N) ratio. The C:N ratio is the mass of C relative to the mass of N. It is an important characteristic of soil amendments because it influences soil biological activity. When the C:N is high, as it would be with woody biomass, the N is primarily used for microbial energy and maintenance. In other words, the N is ‘tied up' by the microbes and not available for plants.
Our understanding of nutrient cycling and availability is most advanced in almond WOR sites replanted back to almond. Previous research at WOR sites that were replanted back to almond found that doubling the N fertilizer recommendation in the first year could help to avoid reduced growth of the new orchard. We established this trial because more research is needed on WOR in other orchard systems, and when annual crops are subsequently planted rather than orchards. Our objectives were to evaluate soil properties and bean yield following WOR compared to a non-WOR control, and to evaluate two N fertilizer rates. We hypothesized that bean yield might be compromised following WOR due to N immobilization but that a higher rate of N fertilizer might overcome the yield gap.
The trial took place on an approximately 35-acre site near Linden, following the June 2019 walnut orchard recycling that incorporated approximately 70 tons of wood chips per acre (Figure 1). At that time, three approximately 0.5-acre plots were kept without wood chips, as ‘untreated controls'. We then identified three 0.5-acre WOR plots adjacent to each control plot.
Figure 1. Recycled orchard site showing wood chips spread over the field and the depth of wood chips applied.
More information about our procedures can be found in the full report, available from https://ucanr.edu/sites/deltacrops/files/352144.pdf. Soils were sampled three times during the season to inform our fertilizer rates and understand C and N cycling. The UC production manual for dry beans indicates that a bean crop that yields 2000 lb/acre needs approximately 80-120 lb of N to grow the crop. While beans are a legume and can fix atmospheric N and turn it into plant-available N, they do not fix enough to satisfy their own N requirement. They fix about 20-40 percent of their need. Nitrogen inputs for the trial are listed in Table 1. The beans were planted on July 10th and harvested on October 19th.
Table 1. Nitrogen inputs in 2020 trial.
Soil samples were evaluated for organic C, total N, and nitrate-N. With the pre-plant samples collected in June, there were no differences in organic C, total N, or nitrate-N between the WOR treatment and control. Total organic C averaged 1.2 percent across all plots, total N averaged 1052 ppm, and nitrate-N averaged 2.78 ppm. In August, prior to sidedress N application, we observed differences in plant size, with plants in the WOR treatments being smaller than those in the control plots (Figure 2).
Figure 2. Bean plants in August 2020, prior to sidedress N application, where plants in the WOR treatment were observably stunted compare to those in the control plots where no wood chips were previously incorporated. A) Plants to the right of the pink flag in the foreground are in a control plot. B) Bean plants in the foreground near the pink flag are in a control plot.
By October, soil organic C, total N, and nitrate-N differed among treatments. (See full report for graphed data.) Organic C and total N were significantly higher in the WOR treatment compared to the control, and neither had differences between the N fertilizer treatments. Nitrate-N, however, had an opposite result. It was significantly higher in the control compared to the WOR treatment, and there were differences between fertilizer rates, with the lowest nitrate being in the grower N rate plots of the WOR treatment. The soil results suggest that, by October, the wood chips were decomposing and contributing to the soil organic C and N pools. The organic N, however, was not yet mineralizing to nitrate. Nitrate was limited in the WOR treatment, where it was possibly tied up by soil microbes, unless boosted by the doubled sidedress fertilizer rate.
Whole orchard recycling and nitrogen fertilizer rate impacted yield in this trial. Yield was statistically higher in the control plots, averaging 2652 lb/ac across replicates, compared to the WOR plots where the average was 1820 lb/ac (Figure 3A). There were also differences in yield among N fertilizer rates (Figure 3B). In the control, the grower N rate and the doubled N rate performed statistically similar. In other words, there was no benefit to applying the doubled sidedress rate in the control. Additionally, the grower rate in the control performed statistically similar to the doubled rate in the WOR treatment. This indicates that while WOR may tie up N – limiting its availability for plant growth and yield – doubling the recommended N rate overcame the yield penalty imposed by WOR. Thus, when coupled with additional N fertilizer, WOR can augment soil health properties, like organic C and N, without penalty to yield.
Figure 3. Bean yield in October 2020 averaged across three replicated blocks. A) Bean yield between WOR treatment and the control were statistically different. B) Bean yield for N fertilizer rates were also statistically different. Bean moisture averaged 10.5 percent across all treatments.
Summary:
This project evaluated soil properties and kidney bean yield following walnut WOR. By incorporating a large quantity of organic C into the soil, WOR has the potential to improve soil health properties, but a tradeoff may be that N becomes limited for subsequent crops. We found organic C and N to increase with WOR from the beginning of the bean season to the end, but plant-available nitrate was limited by WOR. Bean yield suffered as a result of WOR, but doubling the fertilizer N recommendation mitigated the yield penalty. Under the circumstances of this trial, a total N rate of just over 200 lb/ac maintained bean yield where WOR had been implemented compared to the control plots with no wood chips. It does appear, however, that the yield in the WOR treatment might have benefitted from an even higher rate of N. To our knowledge, this trial was the first of its kind and more research will be needed to develop N fertility guidelines in dry beans following WOR. Other tree and annual crops should also be studied. We will continue this trial in 2021 to evaluate whether the impacts of WOR continue in the second season after recycling.

- Author: Michelle Leinfelder-Miles
- Author: Brenna Aegerter
In 2020, we completed a three-year on-farm trial in the Delta to evaluate warm-season legume cover cropping between winter small grain forage crops. Cover cropping is a management practice identified in the Healthy Soils Program of the California Department of Food and Agriculture as having the potential to improve soil health, sequester carbon, and reduce greenhouse gas emissions. Our objectives were to evaluate summer cover cropping for its potential to improve soil tilth at a time of year when the soil would usually be fallowed and dry with no soil cover, and to better understand the agronomic practices that might make summer cover cropping more feasible for Delta farmers. This article summarizes select results from the trial. A detailed report is available on the Delta Crops website.
The trial took place over 4.5 acres of a commercial field, and we compared a cowpea (cultivar ‘Red Ripper') cover crop treatment (CC) to fallow soil (No CC). The cultural practices varied across years (Table 1). Irrigation was only applied to the cover crop plots. In 2020, we estimated that five inches of irrigation was applied to the cover crop, using surface water with moderately low salinity (seasonal ECw of 0.5 dS/m).
Table 1. Agronomic practices during the three-year study.
We soil sampled twice per year. The first sampling occurred following triticale harvest but prior to tillage and cover crop planting. The second occurred at the end of the cover crop season immediately prior to cover crop termination. Soil was sampled from 0-6, 6-12, 12-24, and 24-36 inch depths. We evaluated bulk density, salinity (electrical conductivity, ECe), pH, total nitrogen (N), and total carbon (C). Additionally, in-situ water infiltration was measured at the conclusion of the project (i.e. prior to 2020 cover crop termination). We hand-harvested cover crop biomass, separated it into cultivated cowpeas, volunteer small grains, and weeds and analyzed each component for total C and N. We hand-harvested triticale forage in 2019 and 2020.
Soil properties. After three years of cover cropping, we did not observe improvements in total N or bulk density from cover cropping, and our statistical analysis indicated that total C was impacted by plot location. This suggests that an inherent soil characteristic, like texture, was having more of an impact on total C than the cover crop treatment. We observed better water infiltration in the CC plots (Figure 1). Cover crop roots likely contributed to better soil structure and water conductance. We also observed lower salinity and higher (i.e. less acidic) pH in the CC plots. Root zone salinity (0-36 in) averaged 1.4 dS/m in the CC plots and 2.2 dS/m in the No CC plots. Root zone pH averaged 5.7 in the CC plots and 5.5 in the No CC plots. These results suggest that cover cropping can improve certain soil characteristics, particularly those related to soil-water status, on a relatively short time frame. Changes in nutrients and C storage, however, are less likely to be observed following short-term changes in management.
Figure 1. Three years of cover cropping improved water infiltration (P=0.0198) compared to the standard dry fallow. The error bars represent the standard errors. The photo illustrates how there were visible differences between treatments, even after triticale forage harvest and uniform tillage operations. No CC soil was a fine powder (bottom of the photo); whereas, CC soil was observed to have better aggregation. The grower observed differences in subsequently-planted small grains, with seedlings in the CC plots emerging about five days earlier than seedlings in the No CC plots.
Cover crop stand. Cover crop composition varied over the course of the study and was likely impacted by cultural practices, like planting and irrigation methods. While cowpea was the only seed planted, the stand was a mix of cowpea, volunteer wheat/triticale, and weeds. We observed that the 2020 practices and timing of operations resulted in the least amount of weed growth (Figure 2) and seed heading.
Figure 2. Proportion of cowpeas, small grains, and weeds in total cover crop biomass, and total C and N inputs from the cover crop.
Triticale forage yield. Despite certain soil health benefits, cover cropping did not improve triticale forage yield. The No CC treatment yielded higher than the CC treatment across both years (Figure 3). The CC plots yielded below the two-year field average of 5.5 tons per acre, and the No CC treatment yielded above the field average yield. Given the improved infiltration, pH, and salinity conditions in the CC treatment, the yield result is difficult to explain, but machine harvesting over a larger area might lessen the difference between treatments.
Figure 3. Triticale forage yield as tons of dry matter per acre. The No CC treatments yielded higher than the CC treatments across both years (2019-2020) (P=0.0059).
Summary. In our three-year study, cover cropping had no effect on total N, bulk density, and total C, but water infiltration, salinity, and pH were improved. Triticale forage (i.e. cash crop) yield did not improve as a result of cover cropping, however. Cowpea stand establishment and volunteer grain and weed competition were the biggest challenges to growing a summer cover crop at this site, but earlier planting and termination reduced the weed pressure. Despite these challenges, the grower observed better soil aggregation in areas of the field where the cover crop had grown. Overall, the potential benefits of cover-cropping may not be realized in the first few cover crop cycles, which could hinder long-term adoption. Results may also depend on the cover crop biomass obtained and other site-specific factors. While scientific studies have demonstrated soil health and cash crop yield improvements with cover cropping, more long-term studies are needed in California to demonstrate how these benefits can be realized.
Acknowledgments. This project was supported by the California Climate Investments program. We thank Dawit Zeleke, Morgan Johnson, and Jerred Dixon of Conservation Farms and Ranches for hosting the trial. We thank Tom Johnson of Kamprath Seed and Margaret Smither-Kopperl and Valerie Bullard of the NRCS PMC for information and advice on cover cropping.
