- Author: Surendra K. Dara
Balanced nutrient inputs are essential for optimal plant growth and yields. Depending on the soil, crop, and environmental conditions, certain nutritional supplements further enhance crop performance. While macro- and micro-nutrients are necessary for plant growth and optimal yields, biostimulants play multiple roles by increasing the bioavailability of nutrients, improving nutrient and water absorption, protecting plants from pestiferous organisms either through direct antagonism or by triggering plants defense mechanisms (Berg, 2009; Dara, 2019a). In addition to improving health and yields, biostimulants are also known to increase nutritional quality (Parađiković et al., 2011; Fierentino et al., 2018). Multiple field studies in California demonstrated the potential of biostimulants and soil amendments in improving yields in tomato (Dara, 2019b; Dara and Lewis, 2019) and strawberry (Dara and Peck, 2018; Dara, 2019a). As the knowledge of biostimulants and their potential for sustainable agriculture is expanding, there has been a steady introduction of biostimulant products in the market warranting additional studies. A study was conducted to evaluate the potential of different biostimulant materials on strawberry growth, health, and fruit yields.
Methodology
This study was conducted in an experimental strawberry field at the Shafter Research Station during 2019-2020. Cultivar San Andreas was planted on 29 October 2019. No pre-plant fertilizer application was made in this non-fumigated field which had both Fusarium oxysporum and Macrophomina phaseolina infections in previous year's strawberry planting. Each treatment was applied to a 300' long bed with single drip tape in the center and two rows of strawberry plants. Sprinkler irrigation was provided immediately after planting along with drip irrigation, which was provided one or more times weekly as needed for the rest of the experimental period. Each bed was divided into six 30' long plots, representing replications, with an 18' buffer in between. This study included both biostimulant and nutrient supplements, but this article presents data from the biostimulant treatments only. Treatments were applied either as fertigation through the drip system using a Dosatron or sprayed over the plants with a handheld garden sprayer. The following treatments were evaluated in this study:
i) Grower Standard (GS): Between 6 November 2019 and 9 May 2020, 1.88 qt of 20-10-0 (a combination of 32-0-0 urea ammonium nitrate and 10-34-0 ammonium phosphate) and 1.32 qt of potassium thiosulfate was applied 20 times at weekly intervals through fertigation. This fertilizer program was used as the standard for all treatments except for the addition of biostimulant materials.
ii) GS + Abound: Transplants were dipped in 7 fl oz of Abound (azoxystrobin) fungicide in 100 gal of water for 4 min immediately prior to planting. Transplant dip in a fungicide is practiced by several growers to protect from fungal diseases and is considered as another standard in this study.
iii) GS + Locus program: Applied Str10 (Wickerhamomyces sp.) at 5 fl oz/ac with molasses at 10 fl oz/ac immediately after planting and Rhizolizer (Trichoderma harzianum and Bacillus amyloliquefaciens) at 3 fl oz with a food source blend at 10 fl oz 2 weeks after Str10 application through the drip system. Repeated the same pattern starting from mid-February 2020. From February to May, applied 6 fl oz/ac of Rhizolizer with 20 fl oz/ac of food source once a month. Str10 is an unregistered product with yeast that is expected to help with nutrient uptake and phosphorous mobilization for improved plant vigor and yield. Rhizolizer is expected to solubilize soil nutrients and improve crop growth and yield.
iv) GS + Redox program: Starting from about one month after planting, diKaP (0-31-50 NPK) was applied as a foliar spray at 2 lb in 50 gpa every two weeks. In addition to potassium and phosphorus, diKaP also contains proprietary soluable carbon compounds that improve antioxidant production leading to increased plant respiration and tolerance to abiotic stress.
v) Bio Huma Netics (BHN) program: Transplants were dipped in 10 gal of water with 6.4 fl oz of BreakOut (4-14-2 NPK), 1.28 fl oz of Promax (thyme oil), 1.28 fl oz of Vitol (8-16-4 NPK with iron, manganese, sulfur, and zinc), and 1.28 fl oz of Zap (8-0-0 N with iron, manganese, sulfur and zinc) for 4 min immediately prior to planting. Custom blends of macro- and micro-nutrients (Ultra Precision A and B) were prepared based on soil (pre-planting) and plant tissue analyses and applied as a substitute to the grower standard fertility program. Ultra Precision A during the first 30 days after planting and Ultra Precision B for the rest of the study period were applied at weekly intervals at 1.6 gal/bed for a total of 12 times (compared to 20 fertigation events for the grower standard program). Ultra Precision blends were made with Super Phos/Phos-Max, Super Potassium, X-Tend, Nitric acid, Calcium, 44 Mag, BreakOut, Vitol, Max Pak, Iro-Max, Activol, Comol, and Surf-Max that provided N, P, and K along with boron, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, and sulfur.
vi) GS + BioWorks program 1: Applied 32 fl oz of ON-Gard (based on soy protein hydrolysate) every two weeks through the drip system from planting until canopy develops and then applied as a foliar spray in 50 gpa. ON-Gard is expected to increase the nutrient use efficiency and decrease abiotic stress to the plants.
vii) GS + BioWorks program 2: Applied 32 fl oz of ON-Gard (soy protein-based) every two weeks through the drip system from planting until canopy develops and then sprayed in 50 gpa. Also applied RootShield Plus WP (T. harzianum and T. virens) at 2 lb/ac through drip immediately after planting and 1 lb/ac at the end of November and again at the end of December 2019. RootShield is a biofungicide expected to protect strawberry from phytopathogens and improve water and nutrient uptake.
viii) GS + Fauna Soil Production (FSP) program: Applied CropSignal at 10 gpa six days prior to planting and at 5 gpa 30 after transplanting through the drip system. CropSignal is a carbon-based nutrient formula containing botanical extracts and along with cobalt, copper, manganese, and zinc and is expected to support the growth and diversity of beneficial aerobic soil microbes for improved soil structure, water retention, nutrient cycling, and plant protection.
ix) GS + Stoller program 1: Applied Stoller Root Feed Dry (9-0-5 NPK with boron, calcium, magnesium, and molybdenum) at 10 lb/ac every 10 days starting from 19 February 2020 and Stoller Grow (4-0-3 NPK with copper, magnesium, manganese, and zinc) at 8 fl oz/ac once on 27 February 2020 through the drip system. Stoller Root Feed Dry is expected to promote continuous root growth by maintaining nutritional balance while Stoller Grow is expected to increase growth efficiency and abiotic stress tolerance.
x) GS + Stoller program 2: Applied Harvest More Urea Mate (5-10-27 NPK with boron, calcium, cobalt, copper, magnesium, manganese, molybdenum, and zinc) at 10 lb/ac along with Stoller Crop Mix (algal extract with boron and calcium) at 8 fl oz/ac every 10 days starting from 19 February 2020 and Stoller Grow at 8 fl oz/ac once on 27 February 2020 through the drip system. Harvest More Urea Mate is expected to provide optimal plant growth while Stoller Crop Mix is expected to maintain the nutritional balance and improve crop vigor and yields.
Parameters observed during the study included canopy growth (area of the canopy) in January, February, and March; first flower and fruit count in January; leaf chlorophyll and leaf nitrogen (with chlorophyll meter) in January, February, and May; fruit sugar (with refractometer) in March and May; fruit firmness (with penetrometer) in March, April, and May; severity of gray mold (caused by Botrytis cinereae) and other fruit diseases (mucor fruit rot caused by Mucor spp. and Rhizopus fruit rot caused by Rhizopus spp.) 3 and 5 days after harvest (on a scale of 0 to 4 where 0=no infection; 1=1-25%, 2=26-50%, 3=51-75% and 4=76-100% fungal growth) in March and May; sensitivity to heat stress (expressed as the number of dead and dying plants) in May; and fruit yield per plant from 11 weekly harvests between 11 March and 14 May 2020. Data were analyzed using analysis of variance in Statistix software and significant means were separated using the Least Significant Difference test.
Results and Discussion
The impact of treatments varied on various measured parameters. The interactions among plants, available nutrients, beneficial and pathogenic microorganisms in the crop environment, the influence of environmental factors, and how all these biotic and abiotic factors ultimately impact the crop health and yields are very complex. The scope of this study was only to measure the impact of biostimulants and nutrient supplements on growth, health, and yield parameters and not to investigate those complex interactions.
The canopy size does not always correspond with yields but could be indicative of stresses and how the plant is responding to them in the presence of treatment materials. Plants in some treatments had significantly larger canopy size in January and February, but plants in the grower standard and both Stoller programs were significantly larger than the rest by March. Leaf chlorophyll and nitrogen contents were significantly different among treatments only in January where the grower standard plants had the lowest and the plants that received CropSignal had the highest. When the counts of the first onset of flowers and developing fruits were taken in January, plants that received the BioWorks program that only received ON-Gard had the highest number followed by the CropSignal and Abound treatments. Stoller treatments were not included in the study at this time, so data for leaf chlorophyll, nitrogen, and first flower and fruit counts were not available in January. Average fruit sugar was the highest in BioWorks program with ON-Gard alone followed by FSP's Crop Signal, both Stoller programs, and the Abound treatments. There was no statistically significant difference in the average fruit firmness among the treatments. Severity of the gray mold, which occurred at low levels during the observation period, also did not statistically differ among the treatments. However, the severity of other diseases was significantly different among various treatments with the highest level in fruits from the grower standard. Temperatures were unusually high during the last week of May and several plants exhibited heat stress and started to die. The number of dead or dying plants on 28 May was the lowest in Locus and Abound treatments.
There were significant differences in marketable and unmarketable fruit yields among treatments. Highest marketable yields were seen in both Stoller treatments followed by BioWorks program with ON-Gard alone, BHN, and other treatments. Transplant dip in a fungicide seems to have a negative impact on fruit yields as observed in the current study or earlier studies (Dara and Peck, 2017 and 2018; Peck unpublished data). While the grower standard had the highest amount of unmarketable fruits, the Locus treatment had the lowest in this study. Fruit yield and some of the observed parameters appeared to be better in the grower standard compared to some treatments, which has also been seen in some earlier strawberry studies. While biostimulants can help plants under some stresses, providing sufficient macro- and micro-nutrients seems to be critical for higher fruit yields as seen with Stoller and BHN treatments. It is important to note that BHN materials were applied only 12 times compared to 20 applications of the grower standard treatment or other treatments that were applied on top of the grower standard treatment. It is also important to note that when ON-Gard was used alone, it also improved the marketable fruit yields by nearly 12% compared to the grower standard. When marketable fruit yield in the Abound treatment was considered, all treatments performed better 7-50% higher yields. Sometimes natural balance of the nutrients, organic matter, and microbial community in the soil might result in optimal yields in the absence of pathogens or other stressors. However, it is very common to use fungicidal treatments or add biological or supplemental nutrition to protect from potential threats and improving yields. These results help understand the impact of various biostimulants and supplements and warrant the need to continue such studies under various environmental, crop, and soil conditions.
Acknowledgments: Thanks to Bio Huma Netics, BioWorks, Inc., Fauna Soil Production, Locus Agricultural Solutions, Redox Ag, and Stoller for the financial support of the study and Marjan Heidarian Dehkordi and Tamas Zold for their technical assistance.
References
Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18.
Dara, S. K. 2019a. Improving strawberry yields with biostimulants: a 2018-2019 study. UCANR eJournal of Entomology and Biologicals. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=31096
Dara, S. K. 2019b. Effect of microbial and botanical biostimulants with nutrients on tomato yield. CAPCA Adviser, 22(5): 40-45.
Dara, S. K. and D. Peck. 2017. Evaluating beneficial microbe-based products for their impact on strawberry plant growth, health, and fruit yield. UCANR eJournal of Entomology and Biologicals. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25122
Dara, S. K. and D. Peck. 2018. Evaluation of additive, soil amendment, and biostimulant products in Santa Maria strawberry. CAPCA Adviser, 21 (5): 44-50.
Dara, S. K. and E. Lewis. 2019. Evaluating biostimulant and nutrient inputs to improve tomato yields and crop health. Progressive Crop Consultant 4(5): 38-42.
Fiorentino, N., V. Ventorino, S. L. Woo, O. Pepe, A. De Rosa, L. Gioia, I. Romano, N. Lombardi, M. Napolitano, G. Colla, and Y. Rouphael. 2018. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in Plant Sci. 9: 743.
Parađiković, N., T. Vinković, I. V. Vrček, I. Žuntar, M. Bojić, and M. Medić-Šarić. 2011. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food. Agric. 91: 2146-2152.
- Author: Surendra K. Dara
Good nutrient management is essential not only for optimal plant growth, but also for maintaining good plant health and the ability of the plant to withstand biotic and abiotic stressors. Strawberry, a $3.2 billion commodity in California, requires good nutrient, water, and health management throughout its lengthy fruit production cycle. In addition to the primary nutrient inputs, certain supplements can be beneficial to the crop. A study was conducted in fall-planted strawberries from 2017 to 2018 using a plant-based anti-stress agent, humates, and sulfur, and a special formulation of NPK as supplements to the standard fertility program to evaluate their impact on strawberry fruit yields and quality.
Methodology
Strawberry cultivar Albion was planted during the second week of December 2017 in 38” wide beds with two rows of plants per bed. This study included the following treatments:
1. Grower standard (GS) program included a total of 6.13 gallons of Urea Ammonium Nitrate Solution 32-0-0, 2.59 gallons of Ammonium Polyphosphate Solution, and 6.95 gallons of Potassium Thiosulfate (KTS 0-0-25) to 0.5 acres of the strawberry field. These fertilizers were applied between 5 January and 18 May 2018 approximately at weekly intervals through the drip irrigation system. Additionally, 1 quart of Nature's Source Organic Plant Food 3-1-1 was applied on 5 and 22 January 2018 and again on 5 February 2018.
2. GS + Bluestim at 3.6 lb/ac in 53 gallons applied as a foliar spray with 0.125% Dyne-Amic once every three weeks for a total of six times. Bluestim is an osmoregulator containing >96% of glycine betaine that is expected to protect plants from abiotic stressors.
3. GS + SKMicrosource Ultrafine powder at 1.4 oz in 4 gallons applied as a foliar spray once a month for a total of three times along with SKMicrosource prill applied at 500 lb/ac at the base of the plant once. Both products contain elemental sulfur, sulfite, and sulfate along with potassium, micronutrients, and rare earth minerals. Additionally, the prill form also has humates. These products are expected to improve plants' natural defenses against biotic stressors like pests and diseases.
4. GS + ISO NPK 3-1-3 at 8 fl oz/ac in 100 gallons once every two weeks for a total of four times. ISO NPK 3-1-3 contains isoprenoid amino complex extracted from a desert shrub guayule (Pathenium argentatum), which is expected to improve nutrient uptake and protect plants from abiotic stressors.
The first application of supplements for treatments 2-4 started on 1 March 2018. Each treatment had a 30' long plot marked on a bed replicated four times in a randomized complete block design. The fruit was harvested one to two times per week between 3 April and 14 June 2018 and the weight of marketable and unmarketable berries was determined for each plot. Using a penetrometer, fruit firmness was measured from four fruits from each plot on 3, 16, and 23 April and 14 May 2018. Sugar content was also measured from two fruits from each plot on those four sampling dates. Postharvest health was measured from the fruit harvested on 16 and 23 April and 21 and 31 May 2018. Fruit was kept in perforated plastic containers (clamshells) at room temperature and the growth of gray mold (Botrytis cinerea) and Rhizopus fruit rot (Rhizopus spp.) was rated 3 and 5 days after harvest on a scale of 0 to 4 (where 0=no disease, 1=1-25% fruit with fungal infection, 2=26-50% infection, 3=51-75%, and 4=76-100%). Data were analyzed using the analysis of variance in Statistix software.
Results
There were no statistically significant (P > 0.05) differences among the treatments in any of the measured parameters. However, the marketable fruit yield was nearly 11% higher in the treatment that received SKMicrosource supplements. While the average sugar content was 9.5 oBx in the grower standard, it varied between 9.7 and 9.8 in other treatments. Similarly, the average disease rating during the postharvest fruit evaluation was 1.00 for the standard at 3 days after harvest, while it varied between 0.25 and 0.50 for the other treatments. Average disease rating at 5 days after harvest was between 2.25 and 2.50 for all treatments.
Table 1. Total marketable and unmarketable fruit yield per plot during the study period
Table 2. Fruit firmness and sugar content on four observation dates and their averages
Table 3. Postharvest fruit disease rating 3 and 5 days after four harvest dates
Discussion
The crop was generally healthy during the study period and there were no signs of any abiotic stresses such as salinity, water stress, and extreme temperature fluctuations, or biotic stresses such as pests or diseases except for uniform weed growth in the furrows and some areas of the beds. Since these supplements are expected to help the plants under stressful conditions, significant differences could not be found, probably due to the lack of unfavorable growth conditions. It also appears from the manufacturer's studies that ISO NPK 3-1-3 performs better at 4 fl oz/acre - half the rate recommended for this study. Additional studies can help further evaluate the potential of these supplements both under normal and stressed conditions and at different application rates and frequencies.
Acknowledgments
Thanks to the technical assistance of Dr. Jenita Thinakaran in carrying out the study, the field staff at the Shafter Research Station for the crop maintenance, the financial support of Biobest and Heart of Nature, and to Beem Biologics for providing the test material.
- Author: Surendra K. Dara
There has been a growing interest in the recent years in exploring the potential of biostimulants in crop production. Biostimulants are mineral, botanical, or microbial materials that stimulate natural processes in plants, help them tolerate biotic and abiotic stressors, and improve crop growth and health. Several recent studies demonstrated the potential of the biostimulant or soil amendments in improving crop yields and health. For example, in a 2017 field study, silicon, microbial, botanical and nutrient materials improved processing tomato yields by 27 to 32% compared to the standard fertility program (Dara and Lewis, 2018). In a 2017-2018 strawberry field study, some biostimulant and soil amendment products resulted in a 13-16% increase in marketable fruit yield compared to the grower standard (Dara and Peck, 2018). He et al. (2019) evaluated three species of Bacillus and Pseudomonas putida alone and in different combinations in tomatoes grown in laboratory and greenhouse. The combination of Bacillus amyloliquefaciens, B. pumilus, and P. putida increased the plant biomass and the root/shoot ratio. Significant increase in fruit yield, between 18 and 39%, was also achieved from individual or co-inoculations of these bacteria. A field study was conducted in processing tomato to evaluate the impact of nutrient products containing beneficial microbes and botanical extracts on tomato yields and fruit quality.
Methodology
The study was conducted from late spring to fall of 2018 to evaluate three treatment programs compared to the grower standard. Tomato cultivar Quali T27 was seeded on 25 April and transplanted on 19 June using a mechanical transplanter. Due to high temperatures at the time of planting, some transplants died and they were re-planted on 28 June. Herbicide Matrix was applied on 5 July and Poast was applied on 13 July followed by hand weeding on 27 July. Crop was irrigated, fertigated, and treatements were applied through a drip system. Overhead sprinkler irrigation was additionally used immediately after transplanting. The following treatments were included in the study:
1. Grower standard: 10-34-0 Ammonium Polyphosphate Solution was applied at 10 gal/ac at the time of transplanting followed by the application of UAN-32 Urea Ammonium Nitrate Solution 32-0-0 at the rate of 15 units of N at 3, 6, and 13 weeks after planting and 25 units of N at 7 weeks after planting.
2. Grower standard + BiOWiSH Crop 16-40-0: BiOWiSH Crop 16-40-0 contains 16% nitrogen and 40% phosphate along with B. amyloliquefaciens, B. licheniformis, B. pumilus, and B. subtilis at 1X108 cfu/gram. Crop 16-40-0 was applied at 1 lb/ac at the time of planting followed by the application 0.5 lb/ac at 3, 6, and 9 weeks after planting.
3. Grower standard 85% + BiOWiSH Crop 16-40-0: Crop 16-40-0 was applied at the same rate and frequency as in treatment 2, but the grower standard was reduced to 85%.
4. RootRx: RootRx contains 5% soluble potash and proprietary botanical extracts and is supposed to stimulate a broad range of antioxidant compounds in the plant. It was applied at 0.25 gal/ac at the time of planting followed by the application of 0.5 gal/ac at 3, about 7, and 13 weeks after planting.
Each treatment contained 30' long bed with a single row of tomato plants and replicated five times in a randomized complete block design. Along with the fruit yield, the sugar content of the fruit and leaves [using a refractometer from three fruits (two measurements from each) and four leaves per plot], chlorophyll content (using a digital chlorophyll meter from four leaves per plot), and frost damage levels (using a visual rating on a 0 to 5 scale where 0 = no frost damage and 5 = extreme frost damage with a complete plant death) were also monitored. Due to an unknown reason, some plants in the fifth replication were stunted halfway through the study. Data from the fifth replication were excluded from the analysis. Data were subjected to the analysis of variance using Statistix software and significant means were separated using the Tukey's HSD test.
Results
Fruit yield: Marketable and unmarketable fruit yield was monitored from 27 August to 13 November. Seasonal total for marketable fruit was significantly (P = 0.04) different among the treatments where RootRx resulted in a 26.5% increase over the grower standard while Crop 16-4-0 with the full rate of the grower standard had an 8%, and with 85% of the grower standard had a 13.2% increase. It appeared that a similar improved yield response was also seen when Crop 16-40-0 was used at a reduced rate of the grower standard in other studies conducted by the manufacturer.
Sugar content: Sugar content of the fruit and leaves was measured once after the last harvest and there were no significant (P > 0.05) difference among the treatments.
Chlorophyll content: Chlorophyll content was measured once after the last harvest and there was no significant (P > 0.05) difference among the treatments.
Frost damage: Study was concluded after frosty conditions in November 2018 damaged the crop. Although there were no statistically significant (P > 0.05) differences, plants treated with RootRx had the lowest rating of 2.
Acknowledgements: Thanks to Jenita Thinakaran and the field staff at the Shafter Research Station for their technical assistance, Plantel Nurseries for providing transplants, and BiOWiSH Technologies and Redox Chemicals for their financial support.
References
Dara, S. K. and D. Peck. 2018. Microbial and bioactive soil amendments for improving strawberry crop growth, health, and fruit yields: a 2017-2018 study. UCANR eJournal of Entomology and Biologicals (https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=27891)
Dara, S. K. and E. Lewis. 2018. Impact of nutrient and biostimulant materials on tomato crop health and yield. UCANR eJournal of Entomology and Biologicals (https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=26054)
He. Y., H. A. Pantigoso, Z. Wu, and J. M. Vivanco. 2019. Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. https://doi.org/10.1111/jam.14273
- Author: Surendra K. Dara
- Author: Ed Lewis
California is the leading producer of tomatoes, especially for the processing market (CDFA, 2017). Tomato is the 9th most important commodity in California valued at $1.71. Processed tomatoes are ranked 6th among the exported commodities with a value of $813 million. While good nutrient management is necessary for optimal growth, health, and yields of any crop, certain products that contain minerals, beneficial microbes, biostimulants, and other such products are gaining popularity. These materials are expected to improve crop health and yield, impart soil or drought resistance, induce systemic resistance, or improve plant's immune responses to pests, diseases, and other stress factors (Berg, 2009; Bakhat et al., 2018; Chandra et al., 2018; Shameer and Prasad, 2018). Maintaining optimal plant health through nutrient management is not only important for yield improvement, but it is also an important part of integrated pest management strategy as healthy plants can withstand pest and disease pressure more than weaker plants and thus reduce the need for pesticide treatments.
Experimental plots, transplanting, and treatment details.
Methodology
A study was initiated in the summer 2017 to evaluate the impact of various treatment programs on tomato plant health and yield. Processing tomato cultivar Rutgers was seeded on 7 June and transplanted on 18 July, 2017 using a mechanical transplanter. Monoammonium phosphate (11-52-0) was applied at 250 lb/ac as a side-dress on 7 August as a standard for all treatments. Since planting was done later in the season, crop duration and harvesting period were delayed due to the onset of fall weather. Plots were sprinkler irrigated daily or every other day for 3-4 hours for about 2 weeks after transplanting. Drip irrigation was initiated from the beginning of August for 12-14 hours each week and for a shorter period from mid October onwards.
There were five treatments in the study including the standard. Each treatment had a 38” wide and 300' long bed with a single row of tomato plants. Treatments were replicated four times and arranged in a randomized complete block design. Different materials were applied through drip using a Dosatron injector system, sprayed at the base of the plants with a handheld sprayer, or as a foliar spray using a tractor-mounted sprayer based on the following regimens.
- Standard
- AgSil® 21 at 8.75 fl oz/ac in 100 gal of water through drip (for 30 min) every 3 weeks from 31 July to 13 November (6 times). AgSil 21 contains potassium (12.7% K2O) and silicon (26.5% SiO2) and is expected to help plants with mineral and climate stress, improve strength, and increase growth and yields.
- Yeti BloomTM at 1 ml/gallon of water. Applied to the roots of the transplants one day before transplanting followed by weekly field application through the drip system from 7 August to 13 November (15 times). Yeti is marketed as a biostimulant and has a consortium of beneficial bacteria - Pseudomonas putida, Comamonas testosterone, Citrobacter freundii, and Enterobacter cloacae. Yeti Bloom is expected to enhance the soil microbial activity and helps with improved nutrient absorption.
- Tech-Flo®/Tech-Spray® program contained five products that supplied a variety of macroandmicro nutrients. Products were appliedthroughdrip (for 30 min) at the following rates and frequencies in 300gal of water.
- Tech-Flo All Season Blend #1 1 qrt/ac in transplant water and again at first bloom on 28 August.
- Tech-Flo Cal-Bor+Moly at 2 qrt/ac at first bloom on 28 August.
- Tech-Flo Omega at 2 qrt/ac in transplant water and again on 11 September (2 weeks after the first bloom).
- Tech-Flo Sigma at 2 qrt/ac on 11 September (2 weeks after the first bloom).
- Tech-Spray Hi-K at 2 qrt starting at early color break on 25 September with three follow up applications every two weeks.
- Innovak Global program contained four products.
- ATP Transfer UP at 2 ml/liter of water sprayed over the transplants to the point of runoff just before transplanting. Three more applications were made through drip (for 30 min) on 7 and 21 August and 4 September. This product contains ECCA Carboxy® acids that promote plant metabolism and expected to impart resistance to stress factors.
- Nutrisorb-L at 40 fl oz/ac applied through drip (for 30 min) on 31 July, 14 August (vegetative growth stage), 4 and 18 September, and 2 October (bloom through fruiting). Nutrisorb-L contains polyhydroxycarboxylic acids, which are expected to promote root growth and improve nutrient and water absorption.
- Biofit®N at 2 lb/ac through drip (for 30 min) on 31 July, 21 August (3 weeks after the first), and 4 September (at first bloom). Biofit contains a blend of beneficial microbes – Azotobacter chroococcum, Bacillus subtilis, B. megaterium, B. mycoides, and Trichoderma harzianum. This product is expected to improve the beneficial microbial activity in the soil and thus contribute to improved soil structure, root development, plant health, and ability to withstand stress factors.
- Packhard at 50 fl oz/ac in 50 gal of water as a foliar spray twice during early fruit development (on 11 and 18 September) and every 2 weeks during the harvest period (four times from 2 October to 13 November). Contains calcium and boron that improve fruit quality and reduce postharvest issues.
A 50' long area was marked in the center of each plot for observations. Plant health was monitored on 1, 8, and 22 August by examining each plant and rating them on a scale of 5 where 0 represented a dead plant and 5 represented a very healthy plant. Yield data were collected from 11 October to 5 December on eight harvest dates by harvesting red tomatoes from each plot. On the last harvest date, mature green tomatoes were also harvested and included in the yield evaluation. Data were analyzed using analysis of variance and Tukey's HSD test was used for means separation.
Results and discussion
There was no statistically significant difference (P > 0.05) in the health of the plants in August (Fig. 1) or in the overall seasonal yield (Fig. 2) among treatments. The average health rating from three observations was 3.94 for the standard, 4.03 for AgSil 21, 4.45 for Yeti Bloom, 4.38 for Tech-Flo/Spray program, and 4.35 Innovak Global program.
Fig. 1. Plant health on a 0 (dead) to 5 (very healthy) rating on three observation dates.
When the seasonal total yield per plot was compared, Yeti Bloom had 194.1 lb followed by, Innovak program (191.5 lb), AgSil 21 (187.3 lb), the standard (147.4 lb) and Tech-Flo/Spray program (136.5 lb). Due to the lack of significant differences, it is difficult to comment on the efficacy of treatments, but the yield from AgSil 21 was 27% more than the standard while yields from Innovak program and Yeti Bloom were about 30% and 32% higher, respectively.
Fig. 2. Seasonal total yield/plot from different treatments.
Fig. 3. Percent difference in tomato yield between the standard and other treatment programs.
Studies indicate that plants can benefit from the application of certain minerals such as silicon compounds and beneficial microorganisms, in addition to optimal nutrient inputs. Silicon is considered as a beneficial nutrient, which triggers the production of plant defense mechanisms against pests and diseases (Bakhat et al., 2018). Although pest and disease conditions were not monitored in this study, silverleaf whitefly (Bamisia tabaci) infestations and mild yellowing of foliage in some plants due to unknown biotic or abiotic stress were noticed. AgSil 21 contains 26.5% of silica as silicon dioxide and could have helped tomato plants to withstand biotic or abiotic stress factors. Similarly, beneficial microbes also promote plant growth and health through improved nutrient and water absorption and imparting the ability to withstand stresses (Berg, 2009; Shameer and Prasad, 2018). Beneficial microbes in Yeti Bloom and BiofitN might helped the tomato plants in withstanding stress factors and improved nutrient absorption. Other materials applied in the Innovak program might have also provided additional nutrition and sustained microbial activity.
The scope of the study, with available resources, was to measure the impact of various treatments on tomato crop health and yield. Additional studies with soil and plant tissue analyses, monitoring pests and diseases, and their impact on yield would be useful.
Acknowledgements: Thanks to Veronica Sanchez, Neal Hudson, Sean White, and Sumanth Dara for their technical assistance and the collaborating companies for free samples or financial assistance.
References
Bakhat, H. F., B. Najma, Z. Zia, S. Abbas, H. M. Hammad, S. Fahad, M. R. Ashraf, G. M. Shah, F. Rabbani, S. Saeed. 2018. Silicon mitigates biotic stresses in crop plants: a review. Crop Protection 104: 21-34. DOI: 10.1016/j.cropro.2017.10.008.
Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18. DOI: 10.1007/s00253-009-2092-7.
CDFA (California Department of Food and Agriculture). 2017. California agricultural statistics review 2015-2016. (https://www.cdfa.ca.gov/statistics/PDFs/2016Report.pdf)
Chandra, D., A. Barh, and I. P. Sharma. 2018. Plant growth promoting bacteria: a gateway to sustainable agriculture. In: Microbial biotechnology in environmental monitoring and cleanup. Editors: A. Sharma and P. Bhatt, IGI Global, pp. 318-338.
Shameer, S. and T.N.V.K.V. Prasad. 2018. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, pp.1-13. DOI: 10.1007/s10725-017-0365-1.