- Author: Gary Bender
- Author: David Shaw
OK! Let's Strategize. There are four steps for everybody to consider, it doesn't matter if you have a backyard lawn and landscape or if you have 700 acres of avocados.
1. Maintenance: Irrigation System and Cultural Practices
2. Improve Irrigation Scheduling
3. Deficit Irrigation
4. Reduce Irrigated Area
1. Maintenace
a. Irrigation System.
- Fix leaks. Unfortunately, there are almost always leaks for all kinds of reasons. Pickers step on sprinklers, squirrels eat through polytube, branches drop on valves, coyote puppies like to chew….the system should be checked during every irrigation
- Drain the lines. At the beginning of each year every lateral line should be opened in order to drain the fine silt that builds up.
- Maintain or increase the uniformity of irrigation so that each tree or each area gets about the same amount of water. Common problems include different sized sprinklers on the same line or pressure differences in the lines. Where there are elevation changes, every line should have a pressure regulator, they come pre-set to 30 psi. Having all of your lines set up with pressure regulators is the only way you can get an even distribution of water to all of the trees, and it solves the problem of too much pressure at the bottom of the grove and not enough at the top.
- Clean the filters often. You don't have a filter because you think that the district water has already been filtered? Hah! What happens if there is a break in the line in the street and the line fills with dirt during the repairs? All of your sprinklers will soon be filled with dirt.
- Is water flow being reduced at the end of the lateral line? It could be because scaffold roots are growing old enough to pinch off the buried line. The only cure is to replace the line.
-
b. Cultural Management.
- Control the weeds because weeds can use a lot of water.
- Mulch? Mulching is good for increasing biological activity in the soil and reducing stress on the trees, but the mulch will not save a lot of water if you are irrigating often….the large evaporative surface in mulches causes a lot of water to evaporate if the mulch surface is kept wet through frequent irrigation. Mulches are more helpful in reducing water use if the trees are young and a lot of soil is exposed to direct sunlight.
2. Improve the Irrigation Scheduling.
- CIMIS will calculate the amount of water to apply in your grove based on last week’s water evapotranspiration (ET). You can get to CIMIS by using several methods; for avocado growers the best method is to use the irrigation calculator on the www.avocado.org website. If you need further instruction on this, you can call our office and ask for the Avocado Irrigation Calculator Step by Step paper. You need to know the application rater of your mini-sprinklers and the distribution uniformity of your grove’s irrigation system.
- CIMIS tells you how much water to apply, but you need tensiometers, soil probes or shovels to tell you when to water.
- “Smart Controllers” have been used successfully in landscape and we have used one very successfully in an avocado irrigation trial The one we used allowed us to enter the crop coefficient for avocado into the device, and daily ET information would come in via a cell phone connection. When the required ET (multiplied automatically by the crop coefficient) reached the critical level, the irrigation system would come on, and then shut down when the required amount had been applied. Increased precision can be obtained by fine tuning these devices with the irrigation system precipitation (application) rate.
-
3. Deficit Irrigation.
- Deficit irrigation is the practice of applying less water than the ET of the crop or plant materials. Deficit irrigation is useful for conserving water in woody landscape ornamentals and drought tolerant plants where crop yield is not an issue. Water conserved in these areas may be re-allocated to other areas on the farm or landscape.
- There hasn’t been enough research on deficit irrigation of avocado for us to comment. We suspect, however, that deficit irrigation will simply lead to dropped fruit and reduced yield.
- Stumping the avocado tree could be considered a form of deficit irrigation. In this case, the tree should be stumped in the spring, painted with white water-based paint to reflect heat, and the sprinkler can be capped for at least 2 months. As the tree starts to re-grow, some water should be added back, probably about 10-20% of the normal water use of a mature tree.
- Regulated Deficit Irrigation for Citrus is an important method for saving water, and in some cases will reduce puff and crease of the peel. In one orange trial done by Dr. David Goldhammer in the San Joaquin Valley, an application of 25% of ETc from mid-May to Mid July saved about 25% of applied water for the year and reduced crease by 67%, without appreciably reducing yield.
- 4.
- 3. Reduce Irrigated Area.
- Taking trees out of production. Trees that are chronically diseased and do not produce fruit (or the fruit is poor quality) should be taken out of production during this period. Also consider: trees in frosty areas, trees in wind-blown areas, trees near eucalyptus and other large trees that steal the water from the fruit trees.
- Changing crops. You may want to take out those Valencias during this period and replant to something that brings in more money, like seedless, easy-peeling mandarins. The young trees will be using a lot less water.
- Fallow Opportunities. You may decide to do some soil preparation, tillage or cultivation, or even soil solarization of non-irrigated areas.
We have found that this four step process is a logical way to achieve water cutbacks with least impact. It is possible to achieve a ten percent reduction in water by only improving irrigation system uniformity and scheduling procedures. Often, these two measures also result in better crop performance and reduced runoff. Reducing irrigated area or taking areas out of production should be a last resort and a well thought out decision. Plan for the future, hopefully water will be more available in future years.
- Author: Mark Battany
Efficient and precise irrigation management is becoming increasingly important inCaliforniaagriculture, both for maximizing crop quality and for conserving water. The most advanced irrigation scheduling strategy is based on local measurements of reference evapotranspiration (ETo), which is converted to crop evapotranspiration (ETc) with an appropriate crop coefficient (kc).
To be able to use this method, an irrigation manager needs to have locally accurate ETo values throughout the growing season. However, the highly variable microclimates that characterize many farming areas often make it difficult to use data from distant weather stations; therefore an accurate local measurement may often be preferable to relying on a regional value.
One inexpensive option for measuring ETo locally is to use a simple atmometer (Fig. 1). Atmometers are water-filled devices, in which the actual evaporation of water is measured over time. In their simplest form, the atmometer is outfitted with a graduated sight glass on the water supply tank which allows the user to easily measure the evaporation that occurred over a given period. In practice, this type of atmometer is most suited for making readings at multiple day intervals, for example once per week, or on days when irrigation is applied.
The performance of atmometers versus more expensive weather stations was evaluated on theCentralCoastin 2003. In this study, atmometers were placed adjacent to seven weather stations throughout the area, and weekly values for both methods were compared (Fig. 2). The results indicate that the atmometers and weather stations have very comparable ETo readings, with the atmometers indicating somewhat lower ETo values under conditions of lower evapotranspiration.
Like any technique, using atmometers has advantages and disadvantages. Advantages include their very low cost and ease of operation, with no computer or power required. Disadvantages include the potential for damage by freezing weather, the need to refill the water supply (every three to six weeks), and the need to read the gauge manually. Also, if they are installed in a large open area, birds may tend to perch on the evaporating surface and foul it with their droppings; for this reason several wires are installed on top of the device to
discourage birds from perching there. In general, atmometers function quite reliably with few problems.
Converting atmometer ETo readings to the amount of irrigation run time required to replenish the soil moisture lost to evapotranspiration is fairly straightforward. A relatively simple example for a sprinkler-irrigated field is presented below in Table 1.
Table 1. Example conversion of ETo to irrigation run times for a sprinkler irrigated field |
||
|
|
|
A. Measured atmometer ETo for one week |
2 |
inches |
B. Crop coefficient (kc) |
0.8 |
|
C. Calculated ETc for the week (=AxB) |
1.6 |
inches |
D. Sprinkler application rate |
0.13 |
in/hr |
E. Hours of irrigation required (=C/D) |
12.3 |
hours |
(Note: To convert Gallons to Inches: Gallons ÷ Area (square feet) ÷ 0.6234 = Inches
To convert Inches to Gallons: Inches * Area (square feet) ÷ 1.604 = Gallons)
Atmometer installed on a fence post
atmometer
atmometer ET
- Author: Ben Faber
"We don't need to irrigate, it's winter." This is a commonly held idea, and many years it is true. Adequately timed rains will often meet the needs of avocado trees during the winter period, and in times like last year, even satisfy much of the spring requirement. And the calls are coming in – “What’s wrong with my trees, they have all these brown leaves?”. This from San Diego to San Luis Obispo.
In a low rainfall year, irrigation can be as necessary as at other times of the year. This is because a subtropical evergreen like avocado continues to use water regardless of rainfall patterns. At the time of writing this article in March, we have had a scant 4 inches in Ventura and this is on top of a low rainfall year in 2011-12. Rain is necessary to leach the salts that have accumulated from the last irrigation season.
The driving forces for plant water use are light intensity, wind and relative humidity, as well as temperature. Remember how cold, dry winds can dry your skin or freeze-dry backpack food. Even during the winter, the trees are quite capable of losing large amounts of water with clear skies and cold winds.
Dry Santa Ana conditions are also more common in winter than in the past. This winter, a time of drought, I went out to see an orchard to evaluate it for pruning. On arrival, my first concern was for the water stress in the trees. The grower, however, was unconcerned. The trees had been dutifully irrigated the previous Friday. But over the weekend, a Santa Ana had blown for three days and completely dried the soil in the top 10 inches. Digging around the roots convinced the grower of water stress. Do not take irrigation for granted.
Contributing to the problem is the determination of what amount of rainfall is effective. Effective rainfall is defined as the amount of water that is retained in the root zone after rain. Avocados, especially on shallow soils, do not have much of a root zone. Most soils can be expected to hold about 2 inches of available water in the top 2 feet, less the more sandy, more the more heavy.
If rainfall exceeds the holding capacity within the root zone, it is lost to the plant. Just imagine if all the year's expected rain fell during one storm. It would not be long before irrigation would be required with no more rain coming. The extra water may, however, perform the all-necessary function of leaching accumulated salts from the root zone. When the rain gauge says that 2 inches fell, it is quite possible that all that rain will not be available to the tree. This also goes for the quarter inch storms we get that do not even make it through the leaf litter. It is not effective rainfall, even though it may wash the persea mite off the leaves.
One of the best ways to assess the effectiveness of rainfall within the root zone is with tensiometers. These trusty instruments are most commonly used to schedule irrigations. A good rainfall should return the 8- and 18-inch depth gauges to close to 0 cbars. This will tell you whether the rain thoroughly wetted the root zone. It will not tell you how much may have passed through the root zone, however.
If you are using soil sampling to assess the depth of rain infiltration, simply squeezing a handful of soil can help. Regardless of soil texture, a wetted soil will form a ball or cast when thoroughly wetted. Water moves as a front through the soil. After a rain, take soil samples with depth to find where the potential to form a ball abruptly ends. This will tell you the depth of effective rain.
How well a soil holds together can also be an indication of when to irrigate. Even a sandy loam texture will retain a ball that does not hold together well when there is still adequate moisture for the tree. The possibility of forming a ball decreases with water content. When visible cracking of a soil ball is obvious, it is time to irrigate.
Winter irrigation is something we do not commonly perform, but in low rainfall years it is an activity we need to consider, especially for controlling the salts that accumulate from our previous irrigation season.
Salt damage due to lack of leaching
- Author: Gary Bender
Quite frankly, in a county where water is costing $700 to $1000 per acre foot, we though this practice would have been a common practice. Added to this is the increasing pressure to reduce nitrate leaching into creeks and ground water, where there is a serious problem developing. The natural response when water prices are high is to reduce water use, but we have seen groves where even a 10% reduction in water reduces the yield by 50%, and we have also seen quite a few growers irrigating too much with the belief that a couple of extra feet of water per acre will more than pay the cost of water in increased yield. Clearly we need to apply enough water to make the trees produce a profitable yield, How does a farmer accomplish this?
I believe every grower should be using tensiometers or some other kind of soil moisture monitoring equipment to determine when to water, and using CIMIS to determine how much to water. There, just simply, is no an easier, or a better method.
Some growers said that tensiometers don’t work. Well, they work just fine if they are installed correctly and serviced periodically. If the soil gets too dry (the reading goes above 80 cb) the device breaks suction from the soil, and they don’t work until they are removed, filled, pumped and re-installed. As for gypsum blocks, they work just fine also, but are not very accurate under wet conditions. Both work a lot better than just guessing. There are newer electronic devices that work very well if calibrated with the soil moisture, but they don’t work very well in rocky soil (rocks don’t hold water).
Using CIMIS
This assignment is to help you figure out the water use in your grove. The following is a step by step procedure that is not difficult. Several of our grove managers use this on a weekly basis to calculate the water requirement in each of their groves. We have one grower who has this task assigned to his child in the third grade…Really, this is not that difficult!
This assignment will demonstrate how to use CIMIS to calculate the irrigation requirement for an avocado grove in Escondido. ETo is called the reference evapotranspiration (defined as the water use for eight inch tall grass), and all crops in California are related to this water use by adjusting ETo with a “crop coefficient”. In this example you will see that the crop coefficient for avocado in November is 0.55. ETo data is gathered from the automated weather stations that are part of the CIMIS network in California. The irrigation calculator you will be using multiplies the ETo number by the crop coefficient and gives you Etc, the water use by the crop in question. This comes from the station in “inches” of water loss, and the calculator changes this into gallons per tree per day. The calculator then tells you how much water to apply to the avocados to replace the water they used during the last seven days.
Go the website www.avocado.org
Click on California Industry (on the top right side of the page)
Click on Growers
Click on Water
Click on Irrigation Calculator
Start with Evapotranspiration (ETo).
Click on Go To CIMIS
Use the drop down box and Click on San Diego
Click on Submit
Choose Escondido
Click on Daily Data
- “Select a Time Period”, in this example we will select the previous week; select November 15 through November 21
- In “Select Variables”, leave everything selected with the green checkmark.
- Leave “English Units” selected.
- Click “Retrieve Data”
Write down ETo for the last week. In this case it will be: 0.12, 0.11, 0.11, 0.10, 0.12, 0.12 and 0.10.
Add these up, and you get 0.78 (this is your ETo for the past week). Minimize this window.
You are now back to the Irrigation Calculator on the Avocado website.
- Evapotranspiration, delete the 0.22 and fill in your 0.78
- Under “Crop Coefficient”, just click on November in the drop down box.
- Leave “Distribution Uniformity” at 0.85.
- Leave trees at 109 per acre.
- Leave sprinkler output at 17 gal/hr. (of course, you can change this to match your sprinkler output, but for the sake of this example, leave this at 17).
- Click on Calculate.
You should get 138 gallons (this is the amount of water used by one tree in the last seven days) and a watering run time of 8 hrs and 8 minutes.
As I mentioned earlier, you should have tensiometers (soil moisture meters) set at the 8 inch depth (avocado) or 12 inch depth (citrus) to tell you “when” to water. In avocados, I like to irrigate when the shallow tensiometer reads 20-25 cb, and in citrus when the tensiometer reads 35 – 40 cb. You cannot rely on irrigating every seven days because the tensiometer may tell you the soil is getting dry by the fourth day. This often happens in the summer.
To review, CIMIS tells you how much to water, the tensiometer tells you when to water. Now, in actual use, you may find that, in a windy area or on the south side of a slope, your trees may need more water. Merely add a 10% increase to the run time, and keep making minor adjustments until you get this right for your grove. Or, if you have root rot, you may want to water 10% to 30% less water.
By the way, if you are using this calculator for citrus, merely put 0.65 into the crop coefficient for each month, and you can use the same calculator. Some people believe the crop coefficient in the avocado calculator might be too low. Both Ben Faber and I believe the coefficient should be 0.80, but we don’t exactly have good data to support this…just experience. At any rate, the calculator will put you in the ballpark…and it is a lot better than “guessing”.
Give this a try, and Good Luck!
Irrigation Calculator developed by Reuben Hofshi, Shanti Hofshi and Ben Faber.
- Author: Ben Faber
Standing water can lead to asphyxiation
ASPHYXIATION
Asphyxiation is a physiological problem that may affect certain branches, whole limbs or the entire tree. Leaves wilt and may fall, the fruit withers and drops and the branches die back to a greater or lesser extent. The condition develops so rapidly that it may be regarded as a form of collapse. Usually, the larger stems and branches remain alive, and after a time, vigorous new growth is put out so that the tree tends to recover.
Asphyxiation is related to the air and water conditions of the soil. The trouble appears mainly in fine-textured or shallow soils with impervious sub-soils. In 1997-98, this even occurred on slopes with normally good drainage because the rains were so frequent. When such soils are over-irrigated or wetted by rains, the water displaces the soil oxygen. The smaller roots die when deprived of oxygen. When the stress of water shortage develops, the impaired roots are unable to supply water to the leaves rapidly enough and the tree collapses. The condition is accentuated when rainy weather is followed by winds or warm conditions.
Canopy treatment in less severe instances consists of cutting back the dead branches to live wood. If leaf drop has been excessive, the tree should be whitewashed to prevent sunburn. Fruit, if mature should be harvested as soon as possible to prevent loss. In the case of young trees, less than two years of age, recovery sometimes does not occur, and replanting should be considered if vigorous regrowth does not occur by July.
Asphyxiation can be reduced by proper planting and grading. If an impervious layer is identified, it should be ripped prior to planting. The field should be graded so that water has somewhere to run off the field during high rainfall years. Heavier soils might require planting on berms or mounds so that the crown roots have a better chance of being aerated.
Post-plant, if an impervious layer can be identified and is shallow enough to break through, ripping along side the tree of drilling 4-6 inch post holes at the corners of the tree can improve drainage. It is important that the ripper blade or auger gets below the impervious layer for this technique to be effective.