Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
University of California
Division of Agriculture and Natural Resources

Researchers pinpoint drought-resistant traits in grape rootstocks

UC Davis researchers hope to help the wine industry by identifying traits linked to drought tolerance in grapevine rootstocks. Photo by Gregory Urquiaga

Findings could help wine industry adapt to climate change

Scientists at UC Davis have identified new root traits that help grapevines resist drought. The findings, published in the journal Annals of Botany, could speed up the development of grape rootstocks that protect vines from dry conditions, helping the grape and wine industry adapt to climate change.

The research, led by Department of Viticulture and Enology Assistant Professor Megan Bartlett, comes as 80% of California is experiencing extreme drought.

Most grapevines are not rooted directly into the ground but are instead grafted onto a rootstock, which forms the underground part of the plant and supports growth above ground.

“Rootstocks are an important tool to manage water stress,” Bartlett said. “Our goal was to identify traits that make rootstocks drought tolerant, so that grape breeders can amplify these traits in new varieties.”

Root cell traits

The study focused on traits measuring drought responses in living root cells.

The research specifically identified capacitance – which measures how much roots shrink as they dehydrate – as an important trait for drought tolerance.

“The water that enters the roots has to cross through a band of living cells to reach the xylem – the network of pipes that carries water up to the leaves,” said Bartlett. Most research has focused on xylem traits, but the living cells are often the first to be damaged during drought.

Water stress can shrink, deform, or even kill the living cells, causing the roots to shrivel away from the soil and lose access to the remaining soil water. Vines are then unable to replace water lost to evaporation and are forced to close the stomata – the small pores on the leaves that take in carbon dioxide for photosynthesis – to prevent severe dehydration. But closing the stomata stops photosynthesis and starves the vine of the sugars it needs to grow and ripen fruit.

This study is the first to test whether traits measuring root shrinkage and cell collapse can capture differences in rootstock drought tolerance.

Cell traits and drought tolerance

The researchers grafted Chardonnay onto eight commercial rootstocks. Half of the vines experienced drought conditions and half were kept well-watered in a greenhouse experiment.

The study found the eight rootstocks were surprisingly diverse and varied widely in their traits. The rootstocks also appeared to acclimate to drought by changing their traits in that the droughted vines were less susceptible to shrinkage and cell collapse than the well-watered vines.

Among the traits, capacitance was especially important for drought tolerance. The rootstocks with a lower capacitance (less root shrinkage) were better able to maintain photosynthesis during drought than other rootstocks.

“This research gives us a new trait to target for breeding more drought tolerant rootstocks,” study co-author and Ph.D. student Gabriela Sinclair said.

The research was supported by the American Vineyard Foundation, UC Davis, and by donations to the department from the Rossi family. Researchers at the University of British Columbia and the USDA-ARS Crops Pathology and Genetics Research Unit also contributed to the study.

Posted on Friday, December 17, 2021 at 1:20 PM
  • Author: Emily C. Dooley
Tags: Climate (24), Climate Change (136), drought (194), Emily C. Dooley (8), enology (6), Grapes (18), Megan Bartlett (1), viticulture (20), wine (42), Wine Grapes (9)
Focus Area Tags: Agriculture, Environment, Food

No Comments Posted.

Leave a Reply

You are currently not signed in. If you have an account, then sign in now! Anonymously contributed messages may be delayed.




Security Code:
HTTDEC
:

Read more

 
E-mail
 
Webmaster Email: jewarnert@ucanr.edu