Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
University of California
Division of Agriculture and Natural Resources

Posts Tagged: citrus

Climate change may reduce frost damage to orchard crops

Extreme cold can kill almond buds and flowers. Running sprinklers can warm the orchard to prevent frost damage. Photo by Allen Vizcarra

Irrigation water may ice some flowers, but help protect flowers in the upper canopy from frost damage. Photo by Allen Vizcarra

CalAgroClimate web tools help farmers prepare for frost events

A cold snap damaged almond blossoms across the Central Valley, resulting in more than $44 million in crop insurance claimsin late February 2018. A multi-day frost event wiped out roughly 75% of California's citrus crop and severely damaged avocados in January 2007. Frost can damage crops, impact growers' bottom lines and drive up food prices for consumers. With advance notice, farmers may be able to use heaters, wind machines, irrigation and other tactics to lessen some of the impacts of cold weather, such as damaging near-ripe citrus fruit or killing the bloom in almonds.  

CalAgroClimate is a new farmer-focused website that can help growers anticipate weather-related risks and make plans for taking defensive action. Growers and crop consultants can use CalAgroClimate's crop and location-specific tools and resources to help prepare for upcoming frost events. The website's tools can also support on-farm decisions for managing heat, crop development and pests. 

Future holds less frost

The risk of frost damage to crops and the need to prepare for that risk is top-of-mind for many farmers today, but will it always be so? To examine what climate change might mean for future frost risk, researchers at UC Davis, UC ANR and the USDA California Climate Hub conducted a study examining the incidence of temperatures below multiple “frost thresholds” during the months of critical development phases for three frost-sensitive California crops: almonds, avocados and navel oranges.

Severely frozen avocados may show brown water-soaked spots in the skin, gray areas in the flesh and may even crack or split. Frost-damaged fruit is unmarketable and will drop from the tree. Photo by Mary Lu Arpaia

The researchers found that even during the coldest winters and springs, the incidence of frost exposure declined under projected mid-21st century climate conditions by more than 50% for almonds and oranges, and by more than 75% for avocados. While farmers in 2050 will not find frost risk to completely be a worry of climates past, they will not have to contend with the same frost concerns that farmers face today.

Frost-damaged citrus
Beyond the obvious benefits of reduced risk of crop damages, additional benefits of reduced frost exposure include lower water use and energy costs associated with mitigation actions. Irrigation is a primary means of protecting crops from frost temperatures, and with fewer hours below freezing that means fewer hours of running water and using pumps. The authors of the future frost exposure study showed that growers may collectively save tens of thousands of acre feet of water and enjoy millions of dollars in energy savings.

Few aspects of climate change are considered “positives,” and although the warming winters and springs that result in reduced frost temperatures could also come with increased pest pressure, reduced chill accumulation and other challenges, the reduction in frost exposure is a silver lining.

However, until this frost-free future arrives, growers still need to be prepared to protect their orchards from frost. To assess frost risk for the next seven days for your location, check out the new interactive Frost Advisory Tool at CalAgroClimate.org.

Posted on Monday, January 23, 2023 at 1:20 PM
  • Author: Lauren E. Parker, USDA Climate Hub
  • Author: Tapan Pathak, UC Cooperative Extension specialist
Tags: almonds (55), avocados (14), CalAgroClimate (2), citrus (34), climate change (136), Tapan Pathak (17)
Focus Area Tags: Agriculture

UCCE researchers target sugar-feeding ants, a key to controlling citrus pests, disease

David Haviland sharing his research at the Argentine Ant and Citrus Pest Management Field Day in Redlands in October 2022. All photos by Saoimanu Sope.

Sugar-feeding ants protect pests that infect trees and damage the fruit they bear. Insecticides are often a go-to solution, but may kill beneficial insects in the process, too. Thankfully, Mark Hoddle, University of California Cooperative Extension entomologist and biological control specialist at UC Riverside, together with UCR colleagues in chemical engineering, developed a biodegradable hydrogel baiting system that targets ant populations, which protect sap-sucking pests from their natural enemies. Control of ants allows beneficial parasitoids and predators to greatly reduce pest populations.

Deciding to expand Hoddle's research was a “no-brainer” according to David Haviland, UC Cooperative Extension farm advisor in Kern County.

Haviland is investigating active ingredients that can be effectively used in hydrogel baiting systems. His research builds on Hoddle's use of alginate gels, also known as water beads, soaked in sugar water to control Argentine ants.

“What we're doing in California can benefit places like Florida, Texas, Mexico and beyond,” Haviland said.

A display of Argentine ants at the Argentine Ant and Citrus Pest Management Field Day in Redlands in October 2022.
Sugar-feeding ants are a universal problem as they interfere with biocontrol processes and promote diseases like huanglongbing, or citrus greening, because there are more vectors to spread disease-causing organisms between trees.

The Hoddle lab conducted two years of orchard research showing that when ants are controlled, the amount of citrus flush infested with Asian citrus psyllid (ACP), a mottled brown insect that vectors the pathogen causing citrus greening, decreases by 75%. Citrus flush refers to newly developed leaves.

“But benefits are not restricted to just ACP with Argentine ant control, as natural enemies destroy colonies of other sap-sucking pests too,” said Hoddle. “For example, citrus mealybug infestations on leaves were completely eliminated by natural enemies, 100% control, while densities of fruit infested by mealybugs were reduced by 50%.” 

The Hoddle lab's success inspired Haviland to consider how this approach will fare in different regions of the state where there are different crops, different pests and different ant species. 

Haviland has worked for many years on solid baits that are effective and affordable for ants that feed primarily on protein, like fire ants in almonds, but successful control measures for sugar-feeding ants that drink their food have been elusive.

“Therefore, we're using hydrogels to essentially turn a liquid bait into a solid, making it effective and commercially adoptable,” Haviland said. He and his team are assessing whether active ingredients that undoubtedly work against ants, like thiamethoxam, maintain their effects in a hydrogel system.

Unlike Hoddle's biodegradable alginate gels, Haviland is relying on acrylamide gels that are similar to the absorbing material you would find in a diaper. These gels are not organic, but are currently accessible on a commercial scale, and have been shown to be effective in wine grapes on the North Coast by a Cooperative Extension advisor in Napa County, Monica Cooper. Haviland's current research efforts are focused on citrus, table grapes and wine grapes in the San Joaquin Valley, and on lemons on the coast.

Hoddle's hydrogel baiting system uses alginate gels.
Haviland is experimenting with acrylamide gels.

The primary challenge now is navigating pesticide regulations and registration.

“This is cutting-edge research,” Haviland said, and manufacturer labels for the products being used need to be updated to include hydrogels as an approved use. This process takes time. Additionally, adding new product uses needs to make economic sense for the manufacturer.

Hoddle and Haviland's research can provide data for adding these methods to the product labels.

“If we can show that this tech works against lots of pests, lots of ant species, in lots of different crops across California, hopefully we'll achieve a critical mass of benefits that motivates product manufacturers to make modifications to their labels,” said Haviland.

Haviland is hopeful about the process, and said he believes that UC ANR is in a prime position to lead innovation for an issue that requires collaboration among specialists, advisors and the industry.

Posted on Monday, January 9, 2023 at 1:54 PM
Tags: ants (8), Argentine (1), bait (1), biocontrol (3), citrus (34), Haviland (1), Hoddle (1), hydrogel (1), innovation (11), Kern (1), pest (5), pesticide (5), Riverside (7), sugar (8)
Focus Area Tags: Innovation, Pest Management

Asian citrus psyllid study: Vigilance urged but ‘no cause for panic’

The Asian citrus psyllid is the insect vector for the bacterium that can cause huanglongbing disease. Photo credit: UC Regents

Preliminary results indicate 3.5% of ACP collected showed signs of bacterium that can cause huanglongbing

An ongoing study in the commercial citrus groves of coastal Southern California is looking at whether Asian citrus psyllids – the insect vector of huanglongbing “citrus greening” disease – are carrying the bacterium that can cause HLB.

Thus far, the project has tested more than 3,000 adult ACP collected from 15 commercial citrus sites across the region, of which 138 – just over 3.5% – had some level of the bacterium present, according to researchers from UC Agriculture and Natural Resources, UC Davis, UC Riverside and the University of Arizona, Tucson.

“While the results are a cause for concern, the situation in California is much better than in Florida and Texas, where ACP carrying the bacterium make up the majority of the population and HLB is widespread in commercial citrus,” said Neil McRoberts, a UC Davis plant pathologist and UC Integrated Pest Management program affiliate advisor. “The results indicate that there is no room for complacency, but also no cause for panic.”

Yellowing leaves can be one sign of huanglongbing, which has devastated the Florida citrus industry. Photo credit: UC Regents

Since the first HLB-infected tree in California was found in 2012, nearly 4,000 infected trees have been detected and removed from residential properties in Southern California, mainly in Orange and Los Angeles counties. According to McRoberts, “to date, no HLB has been found in commercial citrus” in California.

He stressed, however, that the aforementioned ACP study – funded by the HLB Multi Agency Coordination Group and managed by USDA-APHIS – does not involve any testing of trees for HLB and focuses only on looking at the insect which spreads the bacterium.

McRoberts also emphasized that the project's detections of the bacterium cannot be considered “official” because the researchers' lab procedures differ from the official testing protocols of the California Department of Food and Agriculture.

“Follow-up sampling by CDFA staff would allow official samples to be collected for further investigation, but is entirely voluntary for the growers involved,” he said, adding that his research team is currently wrapping up the sampling phase of the project, with data analysis continuing into 2023.

While commending the “huge coordinated effort” by the California citrus industry, California Department of Food and Agriculture, UC ANR and other partners to suppress the ACP vector and slow the spread of HLB, McRoberts also urged continued vigilance.

“Our study results indicate that it is not time to declare the emergency status for ACP/HLB in California over – the situation is still evolving,” he said.

For further information about the research, contact Neil McRoberts at nmcroberts@ucdavis.edu or (530) 752-3248.

Posted on Thursday, November 17, 2022 at 4:38 PM
Focus Area Tags: Agriculture, Food, Pest Management

You, too, can grow California’s oldest living orange variety

German Rafael Villalba-Salazar, nursery technician, harvesting budwood from mother citrus trees at the UC Citrus Clonal Protection Program facility. Photo by Stan Lim, UC Riverside

Sweet Mother Orange Tree released from quarantine

The 1000th tree okayed for growing by California's Citrus Clonal Protection Program happens to be the oldest living orange variety in the state.

The program, housed at UC Riverside, is the first of its kind in the world. It began in the 1950s, and its scientists spend up to three years testing and clearing citrus trees of disease so they can be released to commercial and private growers.

By law, every citrus tree newly propagated in California can be traced back to one mother tree created at UCR through the protection program. Program Director Georgios Vidalakis and his group begin their process by testing incoming trees for more than 30 citrus diseases, whether the diseases are known to have emerged in the state or not.

Georgios Vidalakis, director of the Citrus Clonal Protection Program, posing with VI1000, the Bidwell's Bar orange tree. Photo by Stan Lim, UC Riverside

The treatment for any disease identified in that first round of testing is to make a new mini tree from a few cells of the original budwood — short, leafless twigs with buds meant for propagation. “We use special plant cells for this process that diseases cannot penetrate,” Vidalakis said.

After the mini tree grows large enough, program scientists go back and do a second round of testing for disease, making sure they picked the right cells for propagation and eliminating any prior trace of illness.

If it passes the arduous second set of tests, the new tree gets a variety index or VI number that accompanies it for the rest of its life, and it is released to the public.

Dubbed the Mother Orange Tree, Bidwell's Bar is a sweet Mediterranean orange brought to California from Mazatlán, Mexico, and planted in 1856. It was first planted near the Bidwell Bar Bridge near Oroville, then dug up and replanted twice.

Its survival skills are some of the reasons Tom Delfino, former California Citrus Nursery Society director, recommended the old orange tree for the protection program.

“Apparently this variety is very rugged,” Delfino said. “Not only has it survived a lot of cold Northern California winters, but the tree has been dug up and replanted twice — once to protect it from impending flood, and again to make way for the Oroville Dam.”

Much of the state's orange industry is based in areas with warm weather. Delfino, who lives in the San Francisco Bay Area, finds citrus an exciting challenge to grow. By suggesting Bidwell's Bar for approval, he was hoping the protection program would clear it so he could buy its budwood.

On the occasions he has visited the original tree, Delfino said the fruit in reaching distance was always gone. “I think it must be tasty because locals grab it for themselves,” he said. “Makes me even more eager to grow and eat my own. I'm extremely pleased the VI testing is completed so I can acquire it.”

Program scientists graft citrus trees using budwood. Photo by Stan Lim, UC Riverside

Delfino also hopes that this variety will catch on with commercial growers.

“My thought is our citrus industry is concentrated in the southeastern San Joaquin Valley and is subject to a number of pests that like the warm climate there,” Delfino said. “Though this has seeds, which may be a deterrent, it can be grown in colder areas that discourage some of those insects.”

The tree arrived in California nearly two decades before the better-known Washington Navel orange grown by Eliza Tibbets in Riverside. The navel is named for a structure at the bottom end of the fruit, which resembles a belly button. This structure is actually a separate fruit inside the larger fruit. The Washington Navel is also seedless, contributing to its popularity.

“Bidwell's Bar is an example of what was grown in California before the Washington Navel came to dominate, and now that it has a VI number, others can grow it too,” said Tracy Kahn, curator of the Givaudan Citrus Variety Collection at UCR.

Kahn says it's important to preserve the genetic material from a tree with such significance to California. “Some people were worried it was going to die, but now we have an officially cleared source of this historic tree, and it is protected for future generations,” Kahn said.

Posted on Thursday, June 9, 2022 at 9:47 AM
  • Author: Jules Bernstein, UC Riverside
Focus Area Tags: Agriculture, Food

Citrus threat target of $7 million multistate research project

This tree in Florida shows symptoms of huanglongbing (HLB) disease, including a thinning canopy and fruits that fall easily. HLB has devastated the citrus industry in Florida, and poses a threat to California growers. Photo: UC Regents

UC ANR part of team led by Texas A&M AgriLife combating huanglongbing disease

Citrus greening, or huanglongbing disease (HLB), is the most devastating disease for orange and grapefruit trees in the U.S. Prevention and treatment methods have proven elusive, and a definitive cure does not exist.

Since HLB was detected in Florida in 2005, Florida's citrus production has fallen by 80%. Although there have been no HLB positive trees detected in commercial groves in California, more than 2,700 HLB positive trees have been detected on residential properties in the greater Los Angeles region.

“It is likely only a matter of time when the disease will spread to commercial fields, so our strategy in California is to try to eradicate the insect vector of the disease, Asian citrus psyllid,” said Greg Douhan, University of California Cooperative Extension citrus advisor for Tulare, Fresno and Madera counties.

Now, a public-private collaborative effort across Texas, California, Florida and Indiana will draw on prior successes in research and innovation to advance new, environmentally friendly and commercially viable control strategies for huanglongbing.

Efforts to get ahead of HLB in California have focused on the eradication of the disease's insect vector, Asian citrus psyllid. Photo: UC Regents

Led by scientists from Texas A&M AgriLife Research, the team includes three UC Agriculture and Natural Resources experts: Douhan; Sonia Rios, UCCE subtropical horticulture advisor for Riverside and San Diego counties; and Ben Faber, UCCE advisor for Ventura, Santa Barbara and San Luis Obispo counties.

$7 million USDA project

The $7 million, four-year AgriLife Research project is part of an $11 million suite of grants from the U.S. Department of Agriculture National Institute of Food and Agriculture, NIFA, to combat HLB. The coordinated agricultural project is also a NIFA Center of Excellence.

“Through multistate, interdisciplinary collaborations among universities, regulatory affairs consultants, state and federal agencies, and the citrus industry, we will pursue advanced testing and commercialization of promising therapies and extend outcomes to stakeholders,” said lead investigator Kranthi Mandadi, an AgriLife Research scientist at Weslaco and associate professor in the Department of Plant Pathology and Microbiology at the Texas A&M College of Agriculture and Life Sciences.

The UC ANR members of this collaboration will be responsible for sharing findings from the research with local citrus growers across Southern California, the desert region, the coastal region and the San Joaquin Valley.

“In addition to the ground-breaking research that will be taking place, this project will also help us continue to generate awareness and outreach and share the advancements taking place in the research that is currently being done to help protect California's citrus industry,” said Rios, the project's lead principal investigator in California.

Other institutions on the team include Texas A&M University-Kingsville Citrus CenterUniversity of FloridaSouthern Gardens CitrusPurdue University and USDA Agricultural Research Service.  

Kranthi Mandadi, Texas A&M AgriLife Research scientist, is the lead investigator on a multistate HLB project that includes UC ANR's Sonia Rios, Greg Douhan and Ben Faber. Photo: Texas A&M AgriLife

“This collaboration is an inspiring example of how research, industry, extension and outreach can create solutions that benefit everyone,” said Patrick J. Stover, vice chancellor of Texas A&M AgriLife, dean of the Texas A&M College of Agriculture and Life Sciences and director of Texas A&M AgriLife Research.  

HLB solutions must overcome known challenges

An effective HLB treatment must avoid numerous pitfalls, Mandadi explained.

One major problem is getting a treatment to the infected inner parts of the tree. The disease-causing bacteria only infect a network of cells called the phloem, which distributes nutrients throughout a tree. Starved of nutrients, infected trees bear low-quality fruits and have shortened lifespans.

Treatments must reach the phloem to kill the bacteria. So, spraying treatments on leaves has little chance of success because citrus leaves' waxy coating usually prevents the treatments from penetrating.

Second, while the bacteria thrive in phloem, they do not grow in a petri dish. Until recently, scientists wishing to test treatments could only do so in living trees, in a slow and laborious process.

Third, orange and grapefruit trees are quite susceptible to the disease-causing bacteria and do not build immunity on their own. Strict quarantines are in place. Treatments must be tested in groves that are already infected.

Two types of potential HLB therapies will be tested using novel technologies

The teams will be working to advance two main types of treatment, employing technologies they've developed in the past to overcome the problems mentioned above.

First, a few years ago, Mandadi and his colleagues discovered a way to propagate the HLB-causing bacteria in the lab. This method involves growing the bacteria in tiny, root-like structures developed from infected trees. The team will use this so-called “hairy roots” method to screen treatments much faster than would be possible in citrus trees.

The "hairy roots" method, in which researchers grow HLB-causing bacteria in tiny, root-like structures developed from infected trees, will speed the process of screening treatments. Photo: Texas A&M AgriLife
In these hairy roots, the team will test short chains of amino acids – peptides – that make spinach naturally resistant to HLB. After initial testing, the most promising spinach peptides will undergo testing in field trees. To get these peptides to the phloem of a tree, their gene sequences will be engineered into a special, benign citrus tristeza virus vector developed at the University of Florida. The citrus tristeza virus naturally resides in the phloem and can deliver the peptides where they can be effective.

“Even though a particular peptide may have efficacy in the lab, we won't know if it will be expressed in sufficient levels in a tree and for enough time to kill the bacteria,” Mandadi said. “Viruses are smart, and sometimes they throw the peptide out. Field trials are crucial.”

The second type of treatment to undergo testing is synthetic or naturally occurring small molecules that may kill HLB-causing bacteria. Again, Mandadi's team will screen the molecules in hairy roots. A multistate team will further test the efficacy of the most promising molecules by injecting them into trunks of infected trees in the field.

A feasible HLB treatment is effective and profitable

Another hurdle to overcome is ensuring that growers and consumers accept the products the team develops.

“We have to convince producers that the use of therapies is profitable and consumers that the fruit from treated trees would be safe to eat,” Mandadi said.

A side-by-side comparison shows the difference between a healthy grapefruit and one affected by HLB. Photo: Texas A&M AgriLife

Therefore, a multistate economics and marketing team will conduct studies to determine the extent of economic benefits to citrus growers. In addition, a multistate extension and outreach team will use diverse outlets to disseminate project information to stakeholders. This team will also survey growers to gauge how likely they are to try the treatments.

“The research team will be informed by those surveys,” Mandadi said. “We will also engage a project advisory board of representatives from academia, universities, state and federal agencies, industry, and growers. While we are doing the science, the advisory board will provide guidance on both the technical and practical aspects of the project.”

Project team members:

—Kranthi Mandadi, Texas A&M AgriLife Research.     

—Mike Irey, Southern Gardens Citrus, Florida.    

—Choaa El-Mohtar, University of Florida Institute of Food and Agricultural Sciences, Citrus Research and Education Center.

—Ray Yokomi, USDA-Agricultural Research Service, Parlier, California.

—Ute Albrecht, University of Florida IFAS Southwest Florida Research and Education Center.   

—Veronica Ancona, Texas A&M University-Kingsville Citrus Center.

—Freddy Ibanez-Carrasco, Texas A&M AgriLife Research, Department of Entomology, Weslaco.

—Sonia Irigoyen, AgriLife Research, Texas A&M AgriLife Research and Extension Center at Weslaco.

—Ariel Singerman, University of Florida IFAS Citrus Research and Education Center.

—Jinha Jung, Purdue University, Indiana.     

—Juan Enciso, Texas A&M AgriLife Research, Department of Biological and Agricultural Engineering, Weslaco.

—Samuel Zapata, Texas A&M AgriLife Extension, Department of Agricultural Economics, Weslaco.

—Olufemi Alabi, Texas A&M AgriLife Extension, Department of Plant Pathology and Microbiology, Weslaco.

—Sonia Rios, University of California Cooperative Extension, Riverside and San Diego counties.

—Ben Faber, University of California Cooperative Extension, Ventura, Santa Barbara and San Luis Obispo counties.

—Greg Douhan, University of California Cooperative Extension, Tulare, Fresno and Madera counties.

 

Posted on Friday, December 3, 2021 at 8:17 AM
  • Author: Olga Kuchment, Communications Specialist, Texas A&M AgriLife
  • Author: Mike Hsu
Tags: A&M (1), Ben Faber (12), citrus (34), citrus disease (1), citrus greening (5), Greg Douhan (3), HLB (7), huanglongbing (35), NIFA (3), Sonia Rios (1), USDA (19)
Focus Area Tags: Agriculture, Food, Innovation, Pest Management

Read more

 
E-mail
 
Webmaster Email: jewarnert@ucanr.edu