- Author: Dani Lightle
This article first appeared in Sacramento Valley Orchard Source
Missing the Target: Why you Should Irrigate Potted Trees Directly onto Potting Media
or
Why Emitters Should be Placed on the Root Ball at Planting
Dani Lightle, UCCE Orchards Advisor, Glenn Butte & Tehama Counties
N.B. potted trees are standard commercial container grown citrus and avocado trees
Generally, when I am working with growers on a problem related to potted-tree establishment, the cause is lack of water movement into the potted media, creating tree stress. This results from the difference in soil particle size at the boundary between the orchard soil and the tree's potting soil. When you plant a potted tree in your orchard, it has a substrate – some mix of peat and vermiculite – that is very different than your soil type. The change in texture and pore size inhibits water movement from the surrounding soil into the potting media. As a result, Irrigation water applied outside the potted soil media isn't getting to the roots.
The sequence of photos in Figure 1 demonstrates this phenomenon. I set up a mock orchard condition with soil (Tehama series silty loam) next to a potted tree (potting soil) in a ½ inch wide frame. I then slowly added water to match the soil infiltration rate, similar to a drip emitter, approximately 4 inches away from the potting soil in the ‘orchard' soil.
You will see that the water does not move into the potting soil (Figure 1C & D). Two forces – gravitational pull and capillary action – move water downward and laterally in the soil. Since the potting soil is not below the orchard soil, gravity does not move water into the potting soil. Capillary action is not strong enough to move water into the potting soil because the difference in pore size is too great. So, irrigation water goes where it can easily flow – downwards and laterally into dry, native soil but not into the potting soil. More water does not solve the problem, it will just move past your newly planted trees and wet more native soil.
For about the first month of growth, irrigation emitters should be located at the base of the potted tree to ensure the potting medium receives water. Frequently check to ensure that the potting soil stays wet – not the soil somewhere else in the tree row or mound – before, after, and between irrigation sets. The best way to do this is with a small trowel and your hands. Water will need to be applied at the base of the tree until the tree roots grow beyond the potting soil and into your orchard's native soil. The time required for this to happen will vary depending on factors such as temperature, but it should take roughly a month.
Figure 1. This sequence of photos shows the movement of water applied to Tehama series silty-loam soil. Water was applied at the blue arrow, approximately 4 inches from the potting soil. Total elapsed time was 51 minutes. Water moved downwards and laterally but did not cross the boundary into the potting soil.


- Author: Ben Faber
Water moves in a wetting front. When irrigation water hits the soil it moves down with the pull of gravity and to the side according to the pull of soil particles (more lateral with more clay). Soil is a jumble of different sized soil particles, from clay to silt to sand sizes and then often intermixed with stones of different sizes from gravels to boulder. The different textures determine how water moves. It moves fastest through coarse textures and slowest through finer ones – the clays, the ones with the smallest pores. But soils are a jumble of particle sizes and pores.
Water first moves down the larger pores and then it slowly moves through the larger ones. As water moves through the soil it carries salts that have accumulated in the soil. At the wetting front is where the salt accumulate. As the water moves through the larger pores, salts migrate/diffuse from the small pores to the larger ones. This diffusion takes a bit of time, so typically the small pores have a larger salt concentration than the larger ones.
So an initial application of water will carry the salts from these large pores and if the irrigator were to stop in mid-application, it allows time for the salts to move out of the small pores into the larger ones. Then when the irrigation recommences, it will carry more of the salts out of the wetted area – the root zone. This technique is called “bumping” where an irrigation is stopped and then restarted in order to improve not only leaching, but also reduce runoff.
This principle also is at play when there are two or more sources of water quality. Soil salinity can be no lower than the irrigation water that is applied. Then as the soil water is removed through plant absorption or evaporation, the salinity increases. The soil salinity can easily be two to three times higher than the irrigation water.
If there are two sources of water, the initial application can be with the poorer quality water, and once that has reduced the soil salinity, then the better water quality can be applied which will then bring the soil salinity closer to that of the better quality water. By doing this two part leaching, the amount applied of the better quality water can be significantly reduced. This is a type of “bumping” to improve leaching.
Watch this U-Tube video on how water moves through soil, thanks to the work at Walla Walla Community College.
https://www.youtube.com/watch?feature=player_detailpage&v=J729VzBeI_g
Thank you Walla Walla Community College for the video
