Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
Division of Agriculture and Natural Resources
University of California
Division of Agriculture and Natural Resources

Posts Tagged: Natural Resources

Virtual fencing ‘game-changer’ for ranchers grazing cattle

Tech can save ranchers time and benefit animals and land, becoming more viable

Cattle wearing solar powered virtual fencing collars.

After the Caldor Fire destroyed seven miles of fencing on their cattle ranch in 2021, Leisel Finley and her family needed to replace the fence.

Finley, a sixth-generation rancher at Mount Echo Ranch in Amador County, said reconstruction costs were bid at $300,000 and would take at least a year to build, leaving the family without summer pasture and a herd of hungry cows to feed. Additionally, the U.S. Forest Service mandates that grazing be withheld for two years in postfire landscapes. This put the family in a difficult position.

While watching a recording of a California Cattlemen's Association meeting, Finley learned about a pilot program for virtual fencing. Desperate to find an alternative solution, she registered to try the livestock containment technology, which uses GPS enabled collars to monitor each animal's location in near real time.

Livestock producers can draw a perimeter on a map of their pasture using a laptop or smartphone application and send those instructions to the collar. The collar then uses audio and tactile cues to contain the animal in the area.

Eager to discover the short- and long-term benefits of virtual fencing, Finley turned to Scott Oneto, farm advisor, and Brian Allen, assistant specialist, from the University of California Cooperative Extension office in the Central Sierra. Since partnering with Oneto and Allen, Finley said she has come to understand and uncover more of the technology's potential.

The team has consistently observed the technology's value in integrating with and enhancing traditional livestock production systems across California. Though still in its early stages of development, the location tracking and containment system appears to provide time- and cost-savings that make it a game-changer for ranchers.

Ability to monitor location of animals in real time

Virtual fencing really stands out in its ability to monitor each animal's location in real time. During roundups, ranchers can use their smartphones to see their own location relative to their herd. The system can also send alerts if an animal crosses the virtual boundary or if a collar remains stationary for an extended period, potentially indicating that the animal is sick or that the collar has fallen off.

Rounding up cattle on large, forested grazing allotments can be challenging, as the process generally requires a group of people and many return trips to find every animal. Prior to virtual fencing, Finley and her father could gather about 85% to 90% of the herd in a week. Since using virtual fencing, Finley said one of their most recent roundups lasted three days, and they located every single cow.

Something that every livestock producer dreads is the notorious call from a neighbor or California Highway Patrol alerting them that one of their cows is out in the middle of the road. It always seems to happen at midnight or while they are out with friends or family. This scenario changes with virtual fencing.

Cows wearing a different brand of virtual fence collars.

Containment based on animal behavior

The containment system that virtual fencing is built on is based on animal behavior. When the animal crosses an invisible boundary, the collar emits an audio warning, prompting most animals to instinctively turn back into the desired area. If the animal doesn't respond, the collar delivers a mild electric pulse as a secondary deterrent.

Field trials by Oneto and Allen demonstrated the system's success. Recently, the team trained a herd of 37 cattle of mixed ages that had no previous exposure to virtual fencing. During the initial six-day training period, the cattle responded to the audio warning alone about 75% of the time when they approached a virtual fence boundary, with the remaining 25% of cases requiring an electric pulse.

After about three weeks, the herd was responding to audio cues alone about 95% of the time. The field trials also showed that the collars contain the livestock within the desired areas 90% to 99% of the time when the entire herd wears virtual fence collars and their basic needs for safety, connection to the rest of the herd, water, forage, shade, etc. are met.

Opportunities for improvement

While the technology is effective in its current capacity, there are notable areas where it can improve. One limitation to the system is the current reliance on cellular networks to operate. If an animal wanders into an area outside of coverage, the collar will continue to operate based on the last instructions but won't receive updates or report locations. This is especially a concern in many areas of California with poor cell reception, including the steep forested rangelands where many livestock producers have summer grazing allotments.

Another limitation is that some companies require a solar-powered base station with radio and cellular antennas to be placed on the pasture. These facilitate the transfer of animal locations and updates to the virtual fences. A base station going offline would create the same conditions as a drop in cell signal until the base station is repaired. Some companies are currently developing collars that bypass the need for these base stations.

The other major concern for ranchers is the cost for a virtual fencing system. The average rancher can expect to pay an estimated $20,000 to $30,000 in upfront costs. The cost to set up a base station alone is $5,000 to $10,000. However, this cost is highly dependent on several factors, including the manufacturer, the number of livestock to be collared, if the livestock are large or small ruminants, and the number of GPS base stations to cover the range.

According to Allen and Finley, the high cost of virtual fencing can be offset by the unique animal and land management benefits it can provide. “While physical perimeter fencing remains essential, VF is rapidly emerging as an innovative tool to control livestock with ease, precision, and flexibility in ways that were not previously feasible with traditional fencing,” Allen said.

Finley described the technology as a “game-changer” for her family.

Virtual fencing helps control invasive grasses, installing fuel breaks

Virtual fence successfully contained cattle within a three acre area to graze Medusahead, despite the presence of more desirable forage nearby, as indicated by the line grazed into the pasture.

While virtual fencing is designed to contain livestock without physical fencing, it is not intended to outright replace secure perimeter fencing. Instead, it operates best as a highly dynamic and adaptable cross-fence, allowing for more intentional grazing on the landscape to meet livestock production and natural resource conservation objectives within a secure physical perimeter.

With grant funding from the USDA Natural Resources Conservation Service, the UCCE team continues to work with Finley and other livestock producers to test these applications on California's diverse rangelands.

Within the Sierra Nevada and Coast Ranges foothills, these trials include using virtual fencing on cattle for targeted grazing of invasive grasses to support the recovery of native forage and installing fuel breaks within the wildland-urban interface to remove vegetation where the edge of a pasture meets urban housing.

Using virtual fencing, 25 cattle were successfully concentrated on a field of Medusahead (Elymus caput-medusae), an invasive annual grass. The herd respected the virtual fencing boundary 99% of the time despite nearby preferable forage. Grazing reduced medusahead seed heads from 2,072 per square meter in the ungrazed control area to just 68 per square meter in the grazed section.

GPS locations of virtual fencing collared cattle during a 3-week fuel break trial demonstrates how well animals respect the technology after proper training.

In a different trial, 37 cattle with virtual fencing collars were contained within 120-feet-wide fuel breaks along the boundary of an annual rangeland and residential area. Cattle stayed within the boundaries 99% of the time, leading to an 81% reduction in fine fuel biomass and lowering wildfire risk in the wildland-urban interface.

Within rangelands on conifer forests, these UCCE trials concentrate cattle on brush to reduce the flammable plants and vegetation that competes with desirable timber species. It also can prevent livestock from entering sites that are sensitive to livestock presence.

Upcoming grazing trials will focus on how virtual fencing works with goats and sheep. In addition to Oneto and Allen, UCCE's contribution to virtual fencing research is in large part due to Leslie Roche, UCCE specialist and associate professor at UC Davis, Dan Macon and Jeff Stackhouse, UCCE livestock and natural resources advisors, Kristina Horback, associate professor at UC Davis and Lone Star Ranch in Humboldt County.

To learn more about the trials led by the UCCE team,visit https://cecentralsierra.ucanr.edu/Virtual_Fencing/ 

Posted on Wednesday, November 13, 2024 at 11:23 AM
Tags: Brian Allen (0), cattle (0), Central Sierra (0), graze (0), ranch (0), rangeland (0), Scott Oneto (0), technology (0), virtual fencing (0)
Focus Area Tags: Innovation, Natural Resources

UC ANR experts, resources guide response to shothole borers in Bay Area

The expertise of UC Cooperative Extension advisor Beatriz Nobua-Behrmann, seen here training volunteers to spot signs of invasive shothole borers in Southern California, is now informing the ISHB response of Northern California communities. Photo by Krystle Hickman, UC IPM

UC Cooperative Extension scientists, partners managed invasive beetle in Southern California

Late in 2023, a potentially devastating beetle was detected in the San Francisco Bay Area for the first time. But land managers, arborists and agency staff have one big advantage as they devise plans to control the invasive shothole borers (ISHB).

Thanks to collaborations led by University of California Agriculture and Natural Resources, they can draw upon the hard-earned experience of their colleagues in Southern California. Over the past decade, SoCal communities have lost “tens of thousands” of trees due to ISHB infestations, according to Beatriz Nobua-Behrmann, UC Cooperative Extension urban forestry and natural resources advisor for Los Angeles and Orange counties.

In one regional park, about 500 trees had to be removed in the span of just one year. “That kind of impact happened in many locations; a whole street might lose 90% of the trees – all of a sudden,” said Nobua-Behrmann, a member of a statewide network studying ISHB.

An adult female invasive shothole borer measures only about 2 mm in length. Photo by John Kabashima

Spurred by such severe impacts, UC scientists have been studying ISHB and testing various control measures since about 2012. Their lessons are now informing efforts in San Jose – where the first case in the Bay Area was detected in November 2023 – and across the region.

“The UC ANR team is comprised of subject-matter experts,” said Drew Raymond, interim agricultural commissioner for Santa Clara County. “The team has compiled all of the experience from the agencies that have been doing work in Southern California and transplanted that experience here to Northern California.”

Lucy Diekmann, UC Cooperative Extension urban agriculture/food systems advisor, and Igor Lacan, UCCE environmental horticulture and urban forestry advisor, have coordinated regular meetings and trainings of Bay Area agricultural officials, land managers and arborists.

“Lucy and Igor have been instrumental in organizing our partners to establish an effective plan for shothole borers,” said Sara Davis, city forester for San Jose. “Because experts across the broader UC ANR network have many years of firsthand experience with this invasive pest, we are able to draw on their practical know-how to guide our monitoring, management and public education efforts.”

Davis is leading a trapping program in San Jose to determine how widespread ISHB is. Aside from a recent detection in the Santa Cruz Mountains, almost all of the approximately 30 confirmed cases in Northern California have been clustered along the riparian corridor of Coyote Creek through downtown San Jose. This pattern of intense but geographically limited damage was also seen across Southern California – notably in San Diego County along the Tijuana River Valley, where ISHB wiped out the willow population.

“I would expect us in the Bay Area to see this type of localized damage that is not fundamentally different from what they're seeing in Southern California,” Lacan said.

Unusually troublesome pest triggers deadly tree disease

The elusive nature of ISHB (with the female seen here next to the smaller male), as well as other aspects of its biology, render typical tools in the integrated pest management toolbox ineffective. Photo by Akif Eskalen, UC Davis

The invasive shothole borers – a term for two species that are virtually indistinguishable, the polyphagous shothole borer and Kuroshio shothole borer – were first detected in Los Angeles in 2003. The tiny beetles, measuring 1.5 to 2 millimeters in length, became a major concern a decade later when swaths of urban forest began dying across LA County.

Infestations are harmful – and fatal for at least 17 tree species in California – because the fungus that the beetle “farms” as its food source causes a disease called Fusarium dieback. Alarmingly, ISHB make their home in a wide variety of trees; Nobua-Behrmann said 65 tree species in California have been identified as “reproductive hosts” where they can grow their populations.

“The fact that they are such a generalist species means that they can find a host almost anywhere,” she said, noting that sycamore, box elder, cottonwoods, oaks and willows are favorites of ISHB.

Furthermore, typical tools in the integrated pest management toolbox are unavailable or ineffective for this invasive beetle. Unlike most insects, these shothole borers mate with their siblings before leaving the tree, so they don't need to search for mates afterward. This means they are not attracted to the pheromone traps typically used for pest control; traps used for ISHB only work to track their numbers, not reduce them.

“Their biology limits what we can do,” Nobua-Behrmann said. “Since the beetles spend most of their lives inside the trees, it's also hard to reach them with insecticides.”

Largely hidden within trees, ISHB can build up their numbers, undetected for years. A tree with green and plentiful leaves may in fact be harboring a significant infestation. “It's easy for this beetle go under the radar and create a big population and a big problem before you even notice,” Nobua-Behrmann said.

Female ISHB create "galleries," the tunnels within which the beetles spend most of their lives, as seen in this sycamore branch. Photo by Beatriz Nobua-Behrmann

Monitoring and early identification of infestations are crucial

Given this pest's elusive nature, monitoring and early intervention have proven to be essential in Southern California.

“All of the success stories have a major component of monitoring and detection; if you have a good monitoring program and you can quickly identify the trees that are infested, timely action can make a big difference,” said Nobua-Behrmann, citing Disneyland in Anaheim as one example where frequent surveys and robust monitoring prevented major impacts.

As most municipalities don't have the abundant resources of a world-famous theme park, Nobua-Behrmann pioneered a program in Southern California to train community members on recognizing telltale signs of the beetle. Specifically, they looked for its entry holes, which have a characteristically round shape and size, comparable to the tip of a ballpoint pen.

Beginning with UC Master Gardeners and UC California Naturalists and then members of the general public in LA and Orange counties (and later other SoCal counties), the program trained about 100 people on how to look out for the beetle. After verification by experts, volunteers were found to be nearly 90% accurate in identifying ISHB.

Although the volunteer monitoring program is on hiatus, Nobua-Behrmann said it had clear benefits that could potentially help other regions. “It would be great to get this program going in Northern California and hopefully get volunteers and people in the general public to help identify infestations there as well,” she said.

Randall Oliver, statewide ISHB communications coordinator for UC IPM, has been instrumental in educating key organizations and the general public about the beetle. Here, he shares information about invasive tree pests at the recent League of California Cities Annual Conference. Photo by Dahmoon Maeesomy, CDFA

Statewide ISHB network spreads essential information

In addition to coordinating an in-person public training in San Jose in April, Lacan and Diekmann, the UC Cooperative Extension advisors, have been educating local UC Master Gardeners on how to spot signs of the invasive beetle.

For about a decade, Lacan has been warning people about the possibility of ISHB in Northern California, routinely including shothole borers in his presentations on “tree pests to watch.” “I've been doing this since before ‘day zero,' but there was not a whole lot of interest in ISHB, as you might imagine,” Lacan recalled. “But then all of that changed in fall of last year.”

In the past year, Lacan has done a dozen ISHB presentations, workshops and webinars, attended by a total of about 260 people – predominantly city foresters, land managers, production arborists and members of tree-related nonprofits.

The significant branch dieback is a sign of a severe ISHB infestation in this sycamore, one of 17 tree species in California for which ISHB-Fusarium dieback complex can be fatal. Photo by Beatriz Nobua-Behrmann

Lacan noted that the most effective presentations have been at in-person events featuring UC ANR-affiliated experts such as Nobua-Behrmann, UCCE environmental horticulture advisor emeritus John Kabashima, and ISHB program staff Randall Oliver and Hannah Vasilis.

“Here is where we tap into our network,” Lacan said. “This is the power of the statewide shothole borers program.”

Another vital asset has been the collection of practical resources gathered by the ISHB program, the UC Integrated Pest Management team and partner organizations. One example is a deck of identification cards depicting how symptoms of infestation differ from species to species. Such detailed information can help managers determine whether a tree is truly infested – and thus allocate their limited resources more judiciously.

“These very specific, very seriously considered materials are the kind of thing that people really appreciate,” Lacan said. “It's not just a generic ‘it's kind of like this.'”

The symptoms, broken down by tree species, are also listed on the ISHB website. Raymond, the interim agricultural commissioner for Santa Clara County, said his team uses the website to get informed about ISHB and regularly refers community members to it.

“The ISHB website has been a great resource,” Raymond said. “It's full of important and user-friendly information.”

Communities learn to protect trees, adapt to shothole borers

If community members believe a tree is infested, they should review the symptoms of ISHB-Fusarium dieback. If the signs match what they are seeing, they should take a photo of the entry hole (with the tip of a ballpoint pen placed next to the hole as reference) and send images to their county agricultural commissioner's office or local UCCE advisor, who may then seek confirmation.

Extra eyes on urban forests are crucial to help experts identify potential “amplifier trees” – heavily infested trees, with more than 150 entry holes, that are often repeatedly reinfested by subsequent generations of beetles. They contribute to the recurring pattern of severe but localized infestations seen across Southern California – and now in San Jose.

When sharing a photo of a suspected ISHB entry hole, it's a good idea to include the tip of a ballpoint pen in the photo as reference. Photo by Monica Dimson, UCCE

New research suggests that removing severely infested trees – or just the most impacted limbs of those trees – can significantly lower the overall ISHB population and help less-infested trees in the area recover over time.

“You're not going to eradicate ISHB (at least not in Southern California); you're not going to get rid of them – you're going to have them forever,” Nobua-Behrmann said. “But you can keep them at a manageable amount.”

She also emphasized other actions the public can take to prevent the spread of ISHB, such as correctly disposing infested plant material – ideally chipping it to less than an inch in length (or as small as possible) and then composting the chips.

“It's also important to not move firewood and instead buy it where you will be burning,” Nobua-Behrmann said. “It's one of the best things people can do to protect trees from invasive pests.”

After identifying and removing amplifier trees, land managers and landscape arborists should have a plan for replanting, Lacan added. He said they should prioritize species that are less susceptible to the beetle, using his Pest Vulnerability Matrix tool that lists the major pests for different mixes of trees.

“We need to figure out how to have sustainable urban forests, even with this pest,” he said. “We know we can do it, largely thanks to our colleagues in Southern California. So the key lesson is to replant soon – choose smartly, but replant right away.”

Posted on Tuesday, October 29, 2024 at 7:00 AM
Focus Area Tags: Environment, Natural Resources, Pest Management, Yard & Garden

Water discussion on Sept. 29 flows from LA art exhibit

Edith de Guzman, shown pouring water, will participate in a panel discussion of Los Angeles water. The discussion will be followed by a blind water tasting. Photo by Shanley Kellis

Communities in Los Angeles and around California face a variety of water challenges ranging from access to clean, affordable water to water supplies threatened by a changing climate.

The public is invited to a free event featuring a panel discussion of the past, present and future of Los Angeles water. The water discussion will be part of the closing reception for the art exhibit “What's On Tap: LA's Water Story…Source to Spigot” at El Tranquilo Gallery in Los Angeles on Sunday, Sept. 29.

“I hope that people come away understanding that our relationship to and stewardship of water in LA is not only a critical part of our past history, but essential to determining our region's future as well,” said Edith B. de Guzman, UC Cooperative Extension specialist for water equity and adaptation policy with UC Agriculture and Natural Resources and UCLA Luskin Center for Innovation.

“I hope that people come away understanding that our relationship to and stewardship of water in LA is not only a critical part of our past history, but essential to determining our region's future as well,” said de Guzman.

The panel will be moderated by UCLA Public Policy Professor Megan Mullin. Panelists will include de Guzman; Amanda Begley, watershed senior program manager for TreePeople; Conner Everts, facilitator for the Environmental Water Caucus, executive director of the Southern California Watershed Alliance, and co-chair of the Desal Response Group; and Mark Gold, director of water scarcity solutions for the Natural Resources Defense Council.

The discussion will be followed by a blind water tasting. Participants will be able to taste how the flavors of three brands of bottled water compare with each other and Los Angeles Department of Water and Power tap water.

“Thus far, many people have chosen LADWP tap as their favorite  compared to the bottled brands,” de Guzman said. “So another hope I have is that people will come away with greater appreciation and trust of tap water.”

Jolly de Guzman, left, and Edith curated the art exhibit, which highlights five distinct water themes that affect Southern California communities – local water, imported water, tap trust, human right to water and affordability. Photo by Shanley Kellis

The art exhibit, curated by Edith and Jolly de Guzman, highlights five distinct water themes that affect Southern California communities – local water, imported water, tap trust, human right to water and affordability.

The Zanja Madre, a Spanish-era aqueduct that moved water from the Los Angeles River to the pueblo of Los Angeles between 1781 and 1904, once ran past the gallery location.

The “What's On Tap: LA's Water Story…Source to Spigot” exhibit will be open from 11 a.m.-3 p.m. Friday through Sunday, Sept. 27-29, with the closing reception 3-6 p.m. on Sunday, at El Tranquilo Gallery, W-19 Olvera Street, Los Angeles 90012. The panel discussion will begin at 4 p.m. The reception will include live music by Shoshana Ben-Horin.

 

Posted on Monday, September 23, 2024 at 2:20 PM
Tags: Edith de Guzman (0), Water (0)
Focus Area Tags: Health, Natural Resources

Hands-on learning, training make irrigation best practices accessible

UCCE advisors provide free training to nursery and greenhouse staff

Gerry Spinelli (center) and an irrigator from Boething Treeland Farm confirm the amount of water captured from sprinklers. Photo by Saoimanu Sope.

Working as an irrigator seems straightforward at first: if you're not watering plants by hand, you're building and managing systems that can do the watering. What could be complex about a job like this?

University of California Cooperative Extension advisors Bruno Pitton and Gerardo “Gerry” Spinelli can tell you – or better yet, show you.

Pitton and Spinelli, members of the UC Nursery and Floriculture Alliance, offer a one-day technical training in irrigation best-management practices for irrigators working with containerized nursery plants. The comprehensive curriculum – developed with input from two focus groups of California nursery and greenhouse managers – aims to improve irrigation efficiency, reduce water consumption and improve plant health.

Thanks to funding from the California Department of Food and Agriculture, nursery and greenhouse managers in California can request this training for free and advisors like Pitton and Spinelli will travel to conduct the training on-site.

The complexities of irrigation incorporate concepts like evapotranspiration, salinity, irrigation uniformity, capillarity, pressure and flow rate. Spinelli, UCCE production horticulture advisor for San Diego County, said that irrigators have a critical role in the industry because of all the things they must consider to do their job well.

“Our goal is to support irrigators and help them become more confident decision-makers and experts in the field,” said Pitton, UCCE environmental horticulture advisor for Placer and Nevada counties.

Bruno Pitton (left) observes irrigators measuring water pressure during the training at Generation Growers. Photo courtesy of Bruno Pitton.

Interactive sessions reveal nuances of irrigation

The training consists of a presentation on fundamental concepts for managing irrigation in container plant production and hands-on demonstrations. “In the nursery industry, where precise irrigation is crucial for the health and productivity of our crops, having access to expert knowledge is invaluable,” said Mauricio de Almeida, general manager of Burchell Nursery in Fresno County. “The training's practical demonstrations and real-world examples made the concepts easy to grasp, allowing our team to implement the strategies immediately.”

For one of the demonstrations, the advisors used sponges to model soil saturation when water is applied. Ana, an irrigator at Burchell Nursery, appreciated the step-by-step explanations, which helped her better understand how water pressure differs in drip irrigation, sprinklers and watering by hand. Doing this out in the field, as an example of how irrigation audits occur, was extremely helpful for attendees.

Francisco “Frank” Anguiano, production manager of Boething Treeland Farms in Ventura County, observed his team of irrigators as they learned how to measure distribution uniformity with water collected from sprinklers. “This training isn't just about irrigation and plant management. It's also about savings, both water and costs. Who doesn't want to save money and use less water?” Anguiano said.

Burchell Nursery irrigators work together during an activity using drip lines. Photo courtesy of Bruno Pitton.

Reducing the barriers to learning

Many of the irrigators attending these trainings gained their skills and knowledge from life experience rather than a college education, explained Peter van Horenbeeck, vice president of Boething Treeland Farms. “It's important that my irrigators learn from external experts, but it's more important that they can relate to them. And that's what Gerry was able to do,” van Horenbeeck added.

Regarding content and delivery, and referencing what he learned from the focus groups, Pitton wanted the trainings to be easy to understand and engaging. For example, scientists use the term “matric potential” to describe how soil particles hold water against gravity, which is the same as capillary rise. “We demonstrate this concept with a paper towel held vertically and dipped into a beaker of dyed water that it absorbs,” said Pitton.

Many of the irrigators in attendance agreed that hands-on activities and visual aids were instrumental to their learning. Charli, another irrigator at Burchell Nursery, shared that the in-field examples and hosting the training in Spanish kept them engaged.To address language barriers, Spinelli has been conducting trainings in Spanish – a common request from many nurseries with eager participants.

Irrigators at Generation Growers learn how to measure distribution uniformity. Photo courtesy of Bruno Pitton.

Maintaining state regulations and partnerships

Although the technical aspects of irrigation management are key elements of the training, regulatory compliance is also addressed. Recognizing the finite availability of water and the environmental impact of pollution, the advisors highlight irrigation and fertilizer management and runoff prevention as critical components of compliance.

Under Ag Order 4.0 administered by California's Water Resources Control Board, growers must comply with stricter policies regulating nitrogen use. As irrigators learn from the training, better control of irrigation can certainly make a difference.

Deanna van Klaveren, chief operating officer and co-owner of Generation Growers in Stanislaus County, said the most valuable aspect of the training was learning on-site and completing an audit on her own systems. “It is so much more impactful to have trainings like this on-site where our staff can learn and then go out into the nursery and actually put it into practice while the presenters/experts are there,” van Klaveren said.

Pitton and Spinelli described the partnership between UC Cooperative Extension and CDFA as “symbiotic” given the technical and educational capacity of UCCE advisors who conduct research and extension.

“It's a great example of how the two institutions can collaborate successfully. Californians are the ones who win because they get a service for free,” added Spinelli. “And it's rewarding for us to see so much interest in what we, as advisors, do.”

UCCE advisors, Pitton and Spinelli, pose with irrigators from Burchell Nursery to conclude the training. Photo courtesy of Bruno Pitton.

If you are a nursery or greenhouse operator and would like to request the Irrigation Best Management Practices training, please contact the UCCE advisor assigned to the region that corresponds with your nursery location below.

Northern California

Central Coast (Santa Cruz County to Ventura County)

San Joaquin Valley

Southern California

Spanish Trainings Only

An irrigator at Boething Treeland Farm collects water from an irrigation line. Photo by Saoimanu Sope.
Posted on Tuesday, September 3, 2024 at 9:42 AM
Focus Area Tags: Agriculture, Environment, Natural Resources

UCCE report: Local forest restoration teams effective at rapid response

UC Cooperative Extension and Feather River Resource Conservation District staff lead landowners on a tour in October 2022 of lands treated through efforts of the local Emergency Forest Restoration Team. Photo by Daylin Wade
 

Quickly planting trees after wildfires crucial for communities, ecosystems, carbon goals

As the climate crisis fuels more high-severity wildfires, many forests – adapted to bounce back from frequent but less-intense fires – are struggling to recover quickly.

“In a lot of locations, forests in the Sierra Nevada that burn at high severity are not regenerating on their own,” said Susie Kocher, University of California Cooperative Extension forestry and natural resources advisor for the Central Sierra. “They need to have living trees to drop seeds; if everything dies in an intense fire, then there's a high likelihood in those locations that trees might not return for a while.”

According to Kocher, a forest may take multiple decades to grow back on its own, seeding in very slowly from the edges of a burn. To speed up that regeneration process, a pilot program of local “Emergency Forest Restoration Teams,” or EFRTs, have been helping forest landowners rapidly remove dead trees, plant new seedlings and expedite other vital tasks after wildfires.

Kocher is a co-author of a recently released report evaluating the EFRTs, which appear to be effective in assisting often-overwhelmed private landowners navigate competitive funding programs and complicated permitting pathways after wildfire. Small private landowners in California own 7 million acres, comprising 22% of forested land across the state.

“None of our current assistance programs were really designed to rapidly respond to high-severity fire disasters,” Kocher said. “And we're just getting so much more high-severity fire now that there needed to be a different way of helping people, besides business as usual.”

Lead agencies improve coordination of restoration efforts

Drawing from a successful model in Washington, Kocher and other members of the Governor's Forest Management Task Force recommended the formation of EFRTs in 2019 and this recommendation made it into the California Wildfire and Forest Resilience Action Plan of 2021.

A healthy ponderosa pine seedling planted by the Caldor EFRT on private land in 2023. Severely burned, untreated forest land can be seen in the background. Photo by Daylin Wade

Following the Caldor, Dixie and Tamarack fires during that year, disaster relief funds from CAL FIRE and the U.S. Forest Service enabled the establishment of pilot EFRTs in each of the affected regions. A key innovation was designating a local lead agency to coordinate restoration efforts: the El Dorado Resource Conservation District (Caldor), the Feather River Resource Conservation District (Dixie) and Alpine County (Tamarack).

“The idea is that one well-established local agency gets the funds to carry out all the reforestation work,” Kocher said. “They find contractors for the landowners and plan and carry out all the work needed, including dead tree removal, site preparation and replanting; this helps it be more coordinated across the landscape and reduces competition for contractors.”

“Also, for most of that work, there's no cost to the landowner – which is a huge benefit to them, because these things can get really expensive, like many thousands of dollars an acre,” Kocher added.

Although there was an initial steep learning curve for the local lead agencies on the complexities of reforestation and the maze of required permits, they quickly executed a significant number of forest restoration treatments. Within two years, the three pilot teams had collectively completed over 2,500 acres of dead tree removal and 1,400 acres of conifer planting.

“The overwhelming benefit of the pilots was that a lot of work got done on the ground, that otherwise would not have been done – at least not in the timeframe that was made possible by the EFRTs,” said Daylin Wade, a UCCE staff research associate and co-author of the recent report, who synthesized feedback from interviews of professionals involved in the program.

Rapid reforestation better financially, ecologically

Both Wade and Kocher underscored how the EFRTs were crucial in completing restoration tasks in a timely manner. Removal of dead wood becomes trickier and more expensive over time, as the trees decay and are dangerous to cut down.

“A major accomplishment was getting trees out of there while it was both safe and economically viable to remove those trees – and getting trees in the ground before shrubs dominate the site,” Wade explained.

It's also imperative to quickly remove the dead trees to reduce the fuel load and minimize the chances of re-burn in the area.

“If you're not doing this work, then you're actually endangering the investment that you're putting into rebuilding communities that burned, because they're in danger of burning again if you have huge piles of dead trees everywhere,” Kocher said.

Furthermore, expediting those tasks helps restore the forest cover that is crucial for sequestering carbon and achieving the goals of California's sweeping climate action plan – such as attaining carbon neutrality by 2045.

“We have very ambitious carbon goals for our forests in California, and so reestablishing them – even on private lands – is a public benefit,” Kocher said.

Evaluation of EFRTs by UC Cooperative Extension continues

In addition to enumerating the progress of the three EFRT case studies, the evaluation report also lists recommendations to further enhance the program, such as securing rapid and flexible funding for future EFRTs, improving guidance for local lead agencies and streamlining permitting processes.

The authors also stressed the need to expand opportunities for the commercial sale of woody material in the aftermath of a wildfire event. Selling logs and wood chips reduces the volume of material that would need to processed onsite by the EFRTs and their contractors, thereby defraying some of the costs for that work.

But there simply hasn't been a sufficient market for that woody biomass.

“It's a big barrier,” Kocher said. “If we had a healthier timber market, it would be easier to make this stuff pay its own way and be less of a subsidized endeavor.”

UC Cooperative Extension's EFRT evaluation work – made possible by funding from the U.S. Forest Service State, Private and Tribal Forestry, Region 5 – will continue for the next couple years. On the heels of this first report, Wade will next gather and summarize feedback from private landowners on whether the EFRTs are meeting their goals.

And, later this summer and fall, researchers will begin assessing the ecological success of the plantings in the restoration areas, surveying seedling survival and gauging the volume of competing vegetation.

“It's hugely encouraging that we've gotten all these trees in the ground, but it's not the end of the process – it's just the beginning,” Kocher said. “Trees and forests need to be maintained over time, so this next step will let us see how successful that has been, and if there are additional steps needed to actually ensure that these trees succeed and thrive.”

The full report, dedicated to the memory of report co-author and UCCE advisor Ryan Tompkins, can be found at https://ucanr.edu/efrt.

Posted on Tuesday, July 30, 2024 at 9:39 AM
Focus Area Tags: Environment, Innovation, Natural Resources

Read more

 
E-mail
 
Webmaster Email: jewarnert@ucanr.edu